• Title/Summary/Keyword: Coastal aquifer

Search Result 94, Processing Time 0.021 seconds

A Review of Recent Research into Coastal Groudwater Problems and Associated Case Studies (해안 지하수 연구 동향 및 사례 보고)

  • Chang, Sun Woo
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.597-608
    • /
    • 2014
  • It is widely assumed that climate change and other anthropogenically driven processes are having a serious impact on coastal environments. One such impact is saltwater intrusion into coastal aquifers, which has resulted in the loss of groundwater resources. The pattern of saltwater intrusion is strongly dependent on regional hydrogeological characteristics. This study reviews recent qualitative and quantitative research into this problem, and considers relevant case studies. In addition, the characteristics of the aquifers from two representative volcanic islands (Jeju Island, Korea and Oahu Island, USA) are compared. The fundamental theory of density-dependent flow used to model saltwater intrusion processes and the programs that are widely used to simulate saltwater intrusion based on density-driven problems are also investigated. It is expected that the knowledge gained from this review of previous studies can be used to help improve groundwater management practices in Korea and also to inform future interdisciplinary studies.

Hydrogeological Characteristics of Seawater Intrusion in the Coastal Area (임해지역 주변에서의 해수침투특성)

  • 김천수;김경수;배대석;송승호
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.2
    • /
    • pp.61-72
    • /
    • 1997
  • With increasing activities for groundwater withdrawal and for the construction of underground cavern in the coastal areas, the seaward flow of groundwater has been disturbed or even reversed, resulting in seawater intrusion in aquifers. This phenomenon would be attributed to the freshwater contamination and the corrosion of steel materials. The hydrogeological and geochemical investigations have performed to characterize the seawater intrusion into the underground caverns located in the coastal area. Assumimg the inland aquifer as unconfined one, we have found out that the theoretical interface of freshwater-seawater is far different from the pathways identified. In the study site, the main pathways of seawater intrusion into the underground cavern are characterized as the sub-horizontal fractures (zones). The seawater intrusion in granitic terrane would depend mainly on the characteristics of conductive fracture system developed along the coastal area.

  • PDF

Effectiveness of Double Negative Barriers for Mitigation of Sewater Intrusion in Coastal Aquifer: Sharp-Interface Modeling Investigation (경계면 수치 모델을 이용한 해안 지역 이중 양수정의 해수침투 저감 효과)

  • Jung, Eun Tae;Lee, Sung Jun;Lee, Mi Ji;Park, Namsik
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1087-1094
    • /
    • 2014
  • Saltwater pumping method can be used to mitigate saltwater intrusion in coastal aquifers. However, the saltwater pumping well may discharge large freshwater along with saltwater, thereby wasting precious resources. A double negative barrier was proposed: an inland well to capture freshwater and a saltwater well near the coastline to pump saltwater. A previous study anaylzed effects of double negative barriers in dispersion-dominated coastal aquifers and determined the critical pumping rate at the saltwater well which minimized the saltwater ratio at the freshwater well. However, the study resulted in 1~15% of saltwater ratios, which were too high, for example, for drinking water standards. This study analyzed cases that were considered in the previous study, but for advection-dominated cases, and found that freshwater with sufficiently low saltwater ratios could be developed at the freshwater well. In addition, for optimal groundwater management of a watershed not only the minimum saltwater ratio at the freshwater well but also the least freshwater wasted at the saltwater well must be pursued.

Spatio-temporal Variation of Groundwater Level and Electrical Conductivity in Coastal Areas of Jeju Island

  • Lim, Woo-Ri;Park, Won-Bae;Lee, Chang-Han;Hamm, Se-Yeong
    • Journal of the Korean earth science society
    • /
    • v.43 no.4
    • /
    • pp.539-556
    • /
    • 2022
  • In the coastal areas of Jeju Island, composed of volcanic rocks, saltwater intrusion occurs due to excessive pumping and geological characteristics. Groundwater level and electrical conductivity (EC) in multi-depth monitoring wells in coastal areas were characterized from 2005 to 2019. During the period of the lowest monthly precipitation, from November 2017 until February 2018, groundwater level decreased by 0.32-0.91 m. During the period of the highest monthly precipitation, from September 2019 until October 2019, groundwater level increased by 0.46-2.95 m. Groundwater level fluctuation between the dry and wet seasons ranged from 0.79 to 3.73 m (average 1.82 m) in the eastern area, from 0.47 to 6.57 m (average 2.55 m) in the western area, from 0.77 to 8.59 m (average 3.53 m) in the southern area, and from 1.06 to 12.36 m (average 5.92 m) in the northern area. In 2013, when the area experienced decreased annual precipitation, at some monitoring wells in the western area, the groundwater level decreased due to excessive groundwater pumping and saltwater intrusion. Based on EC values of 10,000 ㎲/cm or more, saltwater intrusion from the coastline was 10.2 km in the eastern area, 4.1 km in the western area, 5.8 km in the southern area, and 5.7 km in the northern area. Autocorrelation analysis of groundwater level revealed that the arithmetic mean of delay time was 0.43 months in the eastern area, 0.87 months in the northern area, 10.93 months in the southern area, and 17.02 months in the western area. Although a few monitoring wells were strongly influenced by nearby pumping wells, the cross-correlation function of the groundwater level was the highest with precipitation in most wells. The seasonal autoregressive integrated moving average model indicated that the groundwater level will decrease in most wells in the western area and decrease or increase in different wells in the eastern area.

Experimental Study of Saltwater Intrusions in Coastal Aquifer (해안대수층에서 발생하는 해수침투에 관한 실험적 연구)

  • Park, Hwa-Jun;Kim, Jin-Sung;Kwon, Kyung-Jun;Seo, Seong-Kook;Ahn, Won-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.506-510
    • /
    • 2009
  • 대수층내의 담수-염수 경계면의 위치와 기울기를 파악하는 것은 해안가의 지하수 개발을 위해 선행되어야 하는 연구이다. 가로 140 cm, 세로 70 cm의 사각형 수조에 모래를 채운 모래염수조를 이용하여 포화된 다공질 매체에서 형성되는 담수-염수 경계면을 모의하였다. 다공질 매체의 입자크기에 따른 수리전도도, 해안가 지형의 지표경사, 해수의 염도에 대한 조건을 각기 달리하여 여러 실험조건에서 각 경우에 따라 형성되는 경계면의 형태를 모의하였고, 각 인자가 경계면의 형성에 어떠한 영향을 미치는지를 분석하였다. 각 조건에 따른 총 31가지의 실험을 수행하였으며, Glover 포텐셜 유도식을 이용한 염수침투 경계면을 비교하였다. 모형에서 측정된 염수침투 경계면은 위의 이론식들의 계산치와 유사한 양상을 보였으며, 경계면의 위치와 기울기는 수리전도도, 지표면경사, 염도에 영향을 받는 것으로 나타났다.

  • PDF

Occurrence of acidic and arsenic-rich groundwater in suburban Perth, Western Australia

  • Ron-Watkins;John-Angeloni;Jones, Bobak-Willis;Steve-Appleyard
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.80-81
    • /
    • 2003
  • The Swan Coastal Plain, on which the City of Perth (pop. 1.32 million) is situated, is formed of aeolian sands of Pleistocene-Recent age. The mainly unconsolidated sediments build a series of dune lines paralleling the coastline. The near-surface water-table sees expression in numerous shallow freshwater lakes and marshes in the interdunal depressions. The sands are highly permeable, and 〉 70% of the city’s total water supply is derived from this local aquifer. (omitted)

  • PDF

Effects of Hydraulic Variables on the Formation of Freshwater-Saltwater Transition Zones in Aquifers

  • Park, Nam-sik
    • Korean Journal of Hydrosciences
    • /
    • v.7
    • /
    • pp.1-8
    • /
    • 1996
  • The location and the shape of a freshwater transition zone in a coastal aquifer are affected by many hydraulic variables. To data most works to determine the effects of these variables are limited to qualitative comparison of transiton zones. In this work characteristics of transition zones are analyzed quantitatively. The investigation is limited to a steady-state transition zones. Three dimensionless variables are defined to represent characteristics of steady-state transition zones. They are maximum introsion length, thickness, and degree of stratification. Effects of principal hydraulic variables (velocity and dispersivity) on these characteristics are studied using a numerical model. Dimensional analysis is used to systematically analyze entire model results. Effects of velocity and dispersivity are seem clearly. From this study, increase in velocity is found to cause shrinkage of transition zones. This observation contradicts claims by some that, because dispersion is proportional to velocity, increase in velocity would cause expansion of transition zones.

  • PDF

Application of stoichiometric method in the assessment of groundwater chemistry in a coastal region having complex contaminant sources

  • Rajmohan Natarajan;Kim, Kang-Joo;Hwang, Gab-Soo;Kim, Hyun-Jung;Cho, Min-Joe
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.499-502
    • /
    • 2004
  • Groundwater chemistry in a coastal region having complex contaminant sources was investigated. Water analysis data for 197 groundwater samples collected from the uniformly distributed sixty-six wells were used. Chemical analysis rand results indicate that groundwaters show wide concentration ranges in major inorganic ions, reflecting complex hydrochemical processes of pollutants. Due to the complexity of groundwater chemistry, Results illustrate that thirty five percent of the wells do not fit for drinking based on nitrate and chloride concentration in the study area. the samples were classified into four groups based on Cl and NO$_3$ concentrations and the processes controlling water chemistry were evaluated based on the reaction stoichiometry. The results explained the importance of mineral weathering, anthropogenic activities (nitrification and oxidation of organic matters), and Cl-salt inputs (seawater, deicer, NaCl, etc.) on groundwater chemistry. It was revealed that mineral dissolution is the major process controlling the water chemistry of the low Cl and NO$_3$ group (Group 1). Groundwaters high in NO$_3$ (Groups 2 and 4) are acidic in nature, and their chemistry is largely influenced by nitrification, oxidation of organic matters and mineral dissolution. In the case of chloride rich waters (Group 3), groundwater chemistry is highly influenced by mineral weathering and seawater intrusion associated with cation-exchange reactions.

  • PDF

Application of Flux Average Discharge Equation to Assess the Submarine Fresh Groundwater Discharge in a Coastal Aquifer (연안 대수층의 해저 담지하수 유출량 산정을 위한 유량 평균 유출량 방정식의 적용)

  • Il Hwan Kim;Min-Gyu Kim;Il-Moon Chung;Gyo-Cheol Jeong;Sunwoo Chang
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.105-119
    • /
    • 2023
  • Water supply is decreasing due to climate change, and coastal and island regions are highly dependent on groundwater, reducing the amount of available water. For sustainable water supply in coastal and island regions, it is necessary to accurately diagnose the current condition and efficiently distribute and manage water. For a precise analysis of the groundwater flow in the coastal island region, submarine fresh groundwater discharge was calculated for the Seongsan basin in the eastern part of Jeju Island. Two methods were used to estimate the thickness of the fresh groundwater. One method employed vertical interpolation of measured electrical conductivity in a multi depth monitoring well; the other used theoretical Ghyben-Herzberg ratio. The value using the Ghyben-Herzberg ratio makes it impossible to accurately estimate the changing salt-saltwater interface, and the value analyzed by electrical conductivity can represent the current state of the freshwater-saltwater interface. Observed parameter was distributed on a virtual grid. The average of submarine fresh groundwater discharge fluxes for the virtual grid was determined as the watershed's representative flux. The submarine fresh groundwater discharge and flux distribution by year were also calculated at the basin scale. The method using electrical conductivity estimated the submarine fresh groundwater discharge from 2018 to 2020 to be 6.27 × 106 m3/year; the method using the Ghyben-Herzberg ratio estimated a discharge of 10.87 × 106 m3/year. The results presented in this study can be used as basis data for policies that determine sustainable water supply by using precise water budget analysis in coastal and island areas.

다중 환경추적자를 이용한 제주도 지하수 유동 및 수질 특성 분석

  • 고동찬;김용재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.138-141
    • /
    • 2004
  • The environmental tracers tritium/helium-3 (3H/3He) and chlorofluorocarbons (CFCs) were investigated in ground water from Jeju Island, Korea, a basaltic volcanic island. The apparent 3H/3He and CFC-12 ages were in relatively good agreement in samples with low concentrations of terrigenic He. Ground water mixing was evaluated by comparing 3H and CFC-12 concentrations with mixing models, which distinguished old water with negligible 3H and CFC-12, young water with piston flow, and binary mixtures of the two end members. The ground water CFC-12 age is much older in water from wells completed in confined zones of the hydro-volcanic Seoguipo formation in coastal areas than in water from the basaltic aquifer. Comparison of major element concentrations in ground water with the CFC-12 age shows that nitrate contamination processes contribute more solutes in young water than are derived from water-rock interactions in non-contaminated old water. Chemical evolution of ground water resulting from silicate weathering in basaltic rocks reaches the zeolite-smectite phase boundary. The calcite saturation state of ground water increased with the CFC-12 apparent (piston flow) age. In agricultural areas, the temporal trend of nitrate concentration in ground water was consistent with the known history of chemical fertilizer use on Jeju Island, but the response of nitrate concentration in ground water to nitrogen inputs follows an approximate 10-year delay. Based on mass balance calculations, it was estimated that about 40% of the nitrogen applied by fertilizers reached the water table and contaminated ground water resources when the fertilizer use was at the highest level.

  • PDF