• Title/Summary/Keyword: Coastal Zone Management Methods

Search Result 14, Processing Time 0.021 seconds

Detection and Analysis of Post-Typhoon, Nabi Three-Dimensional Changes in Haeundae Sand Beach Topography using GPS and GIS Technology (GPS·GIS 기법을 활용한 태풍 후 해운대 해빈지형의 3차원 변화 탐지 및 분석)

  • Hong, Hyun-Jung;Choi, Chul-Uong;Jeon, Seong-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.82-92
    • /
    • 2006
  • As beaches throughout Korea have suffered great losses of sand due to artificial developments and meteorological phenomena, particularly typhoons, it is necessary to monitor beaches that are prone to erosion continuously, establish and enforce a comprehensive plan to attack coastal erosion with the object of the long-term management. However, debates and temporary measures, not based on accurate coastal zone surveys and analyses, have been established up to now. Therefore, with Haeundae sand beach as a case study, we proposed methods to collect accurate spatial data of the coastline and the sand beach through GPS survey. And we detected and analyzed topographic changes resulting from Typhoon Nabi quantitatively and qualitatively, by using GIS technique. Results showed a mean elevation of 1.95 m, a total area of 53,441 $m^2$, and a total volume of 104,639 $m^3$ after Typhoon Nabi. Mean elevation rose 0.06 m between the pre- and the post-typhoon surveys by a protective shore wall. However, strong winds and north-northeast surges brought by the typhoon caused erosion of the area and the volume, by 3,096 $m^2$ and 2,320 $m^3$. Accurate spatial databases of coastal zones based on integrated GPS GIS techniques and quantitative and qualitative analyses of topographical changes will help Korea develop systematic and effective countermeasures against coastal erosion.

  • PDF

THE POTENTIAL OF SATELLITE REMOTE SENSING ON REDUCTION OF TSUNAMI DISASTER

  • Siripong, Absornsuda
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.52-55
    • /
    • 2006
  • It's used to be said that tsunami is a rare event. The recurrence time of tsunami in Sumatra area is approximately 230 years as CalTech Research Group‘s study from paleocoral. However, the tsunami occurred in Indian Ocean on 26 December 2004, 28 March 2005 and 17 July 2006, because the earthquakes still release the energy. To cope with the tsunami disaster, we have to put the much effort on better disaster preparedness. The Tsunami Reduction Of Impacts through three Key Actions (TROIKA) was suggested by Eddie N. Bernard, the director of NOAA/PMEL (Pacific Marine Environmental Laboratory). They are Hazard Assessment, Mitigation and Warning Guidance. The satellite remote sensing has potential on these actions. The medium and high resolution satellite data were used to assess the degree of damage at the six-damaged provinces on the Andaman seacoast of Thailand. Fast and reliable interpretation of the damage by remote sensing method can be used for inundation mapping, rehabilitation and housing plans for the victims. For tsunami mitigation, the satellite data can be used with GIS to construct the evacuation map (evacuation route and refuge site) and coastal zone management. It is also helpful for educational program for local residents and school systems. Tsunami is a kind of ocean wave, therefore any satellite sensors such as SAR, Altimeter, MODIS, Landsat, SPOT, IKONOS can detect the tsunami wave in 2004. The satellite images have shown the characteristics of tsunami wave approaching the coast. For warning, satellite data has potential for early warning to detect the tsunami wave in deep ocean, if there are enough satellite constellation to monitor and detect the first tsunami wave like the pressure gauge, seismograph and tide gauge with the DART buoy can do. Moreover, the new methods should be developed to analyse the satellite data more faster for early warning procedure.

  • PDF

A Study Identifying Improved Building Height Regulations for Managing Natural Landscape in Collective Facility Districts in and around National Parks (국립공원 집단시설지구 자연경관관리를 위한 층고규제 합리화 방안)

  • Lee, Gwan-Gyu
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.5
    • /
    • pp.48-56
    • /
    • 2011
  • The objective of this study is to develop quantitative criteria for setting reasonable standards and regulations for building heights in collective facility districts inside national parks or those connected to their borders. Heights of all building sin collective facility districts were simulated in order to determine heights of ridge lines of sight passing the upper parts of buildings from a main view point. Where a facility's zone is located at the inside or boundary of inland mountainous national parks, and there are coastal type national parks with mountains in the background, the study recommended assigning the maximum allowable height of a building as 8.82m if national park authorities intend to preserve the ridges at three-tenths the height of a mountain. It amounts to 3 or 3.5 stories when it is converted into the number of floors. It is desirable to apply this standard to accommodations like a hotel except lodge or cottage as the maximum allowable height of a building. Nevertheless, when there aren't back mountainous areas among coastal-type national parks, there is a need for applying a separate standard. If an equal and uniform standard is applied to all collective facility districts, it becomes difficult to address local differences when managing landscape. There must be flexibility when applying a standard, depending on variables such as location of view points, differences in the methods of selection of view points, and differences in view angles, etc. Thus, there is a need for different landscape management strategies that address the unique natural environment of different zones.

A Study on Forestation for Landscaping around the Lakes in the Upper Watersheds of North Han River (북한강상류수계(北漢江上流水系)의 호수단지주변삼림(湖水団地周辺森林)의 풍경적시업(風景的施業)에 관(関)한 연구(硏究))

  • Ho, Ul Yeong
    • Journal of Korean Society of Forest Science
    • /
    • v.54 no.1
    • /
    • pp.1-24
    • /
    • 1981
  • Kangweon-Do is rich in sightseeing resources. There are three sightseeing areas;first, mountain area including Seolak and Ohdae National Parks, and chiak Provincial Park; second eastern coastal area; third lake area including the watersheds of North Han River. In this paper, several methods of forestation were studied for landscaping the North Han River watersheds centering around Chounchon. In Chunchon lake complex, there are four lakes; Uiam, Chunchon, Soyang and Paro from down to upper stream. The total surface area of the above four lakes is $14.4km^2$ the total pondage of them 4,155 million $m^3$, the total generation of electric power of them 410 thousand Kw, and the total forest area bordering on them $1,208km^2$. The bordering forest consists of planned management forest ($745km^2$) and non-planned management forest ($463km^2$). The latter is divided into green belt zone, natural conservation area, and protection forest. The forest in green belt amounts to $177km^2$ and centers around the 10km radios from Chunchon. The forest in natural conservation area amounts to $165km^2$, which is established within 2km sight range from the Soyang-lake sides. Protection forest surrounding the lakes is $121km^2$ There are many scenic places, recreation gardens, cultural goods and ruins in this lake complex, which are the same good tourist resources as lakes and forest. The forest encirelng the lakes has the poor average growing stock of $15m^3/ha$, because 70% of the forest consists of the young plantation of 1 to 2 age class. The ration of the needle-leaved forest, the broad-leaved forest and the mixed forest in 35:37:28. From the standpoint of ownership, the forest consists of national forest (36%), provincial forest (14%), Gun forest (5%) and private forest(45%). The greater part of the forest soil, originated from granite and gneiss, is much liable to weathering. Because the surface soil is mostly sterile, the fertilization for improving the soil quality is strongly urged. Considering the above-mentioned, the forestation methods for improving landscape of the North Han River Watersheds are suggested as follows: 1) The mature-stage forest should be induced by means of fertilizing and tendering, as the forest in this area is the young plantation with poor soil. 2) The bare land should be afforested by planting the rapid growing species, such as rigida pine, alder, and etc. 3) The bare land in the canyon with moderate moist and comparatively rich soil should be planted with Korean-pine, larch, ro fir. 4) Japaness-pine stand should be changed into Korean-pine, fir, spruce or hemlock stand from ravine to top gradually, because the Japanese-pine has poor capacity of water conservation and great liability to pine gall midge. 5) Present hard-wood forest, consisting of miscellaneous trees comparatively less valuable from the point of wood quality and scenerity, should be change into oak, maple, fraxinus-rhynchophylla, birch or juglan stand which is comparatively more valuable. 6) In the mountain foot within the sight-range, stands should be established with such species as cherry, weeping willow, white poplar, machilus, maiden-hair tree, juniper, chestnut or apricot. 7) The regeneration of some broad-leaved forests should be induced to the middle forest type, leading to the harmonious arrangement of the two storied forest and the coppice. 8) For the preservation of scenery, the reproduction of the soft-wood forest should be done under the selection method or the shelter-wood system. 9) Mixed forest should be regenerated under the middle forest system with upper needle-leaved forest and lower broad-leaved forest. In brief, the nature's mysteriousness should be conserved by combining the womanly elegance of the lakes and the manly grandeur of the forest.

  • PDF