• Title/Summary/Keyword: Coastal Topography

Search Result 262, Processing Time 0.028 seconds

Depositional processes and environmental changes during initial flooding of an epeiric platform: Liguan Formation (Cambrian Series 2), Shandong Province, China

  • Lee, Hyun Suk;Chen, Jitao;Han, Zuozhen;Chough, Sung Kwun
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.903-919
    • /
    • 2018
  • This paper focuses on the depositional processes and environmental changes during initial marine flooding recorded in the lower Cambrian succession of the North China Platform in Shandong Province, China. In order to understand imbalance of accommodation and sediment supply in the initial stage of basin-fill, a detailed analysis of sedimentary facies was made for the lowermost siliciclastic deposits of the Liguan Formation. It reveals ten siliciclastic lithofacies in three large-scale outcrops (Jinhe, Anqianzhuang, and Zhangjiapo sections). These facies are grouped into four facies associations, representing siliciclastic foreshoreshoreface (S1), siliciclastic offshore (S2), distributary mouth bars (S3), and coastal plain (S4). The siliciclastic components occur in a linear belt, emanating from a major drainage system in the northeastern part of the platform. Deposition of siliciclastic sediments was largely controlled by regional topography of the unconformable surface and shoreline configuration as well as strong effect of waves and currents. With ensued rise in sea level and decrease in siliciclastic sediment supply, carbonate sediments prevailed, filling the accommodation created by epeirogenic subsidence and sediment loading.

Vegetation and water characteristics of floating mat in a coastal lagoon as the habitat for endangered plant species

  • Hong, Mun Gi;Nam, Bo Eun;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.220-227
    • /
    • 2018
  • Background: To understand the ecological characteristics of floating mat in which endangered species of Iris laevigata and Menyanthes trifoliata inhabit, we surveyed the vegetation and water environments of a floating mat wetland and examined the relations between ecological characteristics of the mat. Results: Although Phragmites australis and Zizania latifolia were found at all experimental quadrats (n = 61) as the major vegetational components of the floating mat wetland, they showed relatively poor growth performances in terms of shoot height (< 2 m) and biomass production (<$300g/m^2$) compared with those in soil-based wetlands because of oligotrophic water condition. The competitiveness and distribution of P. australis and Z. latifolia seemed to be determined by water level difference by micro-topography rather than water chemistry. Conclusion: P. australis and endangered plant species mainly occurred in the area of relatively shallow water, whereas Z. latifolia and deep-water species such as Scirpus fluviatilis mostly inhabit in the area of deep water on the floating mat. Continuously maintained water level and oligotrophic water condition in the floating mat appeared to be important environments for endangered species such as I. laevigata and M. trifoliata.

From Zomia to Holon: Rivers and Transregional Flows in Mainland Southeastern Asia, 1840-1950

  • Iqbal, Iftekhar
    • SUVANNABHUMI
    • /
    • v.12 no.2
    • /
    • pp.141-155
    • /
    • 2020
  • How might historians secure for the river a larger berth in the recent macro-historical turn? This question cannot find a greater niche than in the emerging critique of the existing spatial configuration of regionalism in mainland Southeastern Asia. The Brahmaputra, Irrawaddy, Salween, Mekong and Yangtze rivers spread out like a necklace around Yunnan and cut across parts of the territories that are known as South, Southeast and East Asia. Each of these rivers has a different topography and fluvial itinerary, giving rise to different political, economic and cultural trajectories. Yet these rivers together form a connected "water-world". These rivers engendered conversations between multi-agentive mobility and large-scale place-making and were at the heart of inter-Asian engagements and integration until the formal end of the European empires. Being both a subject and a sponsor of transregional crossings, the paper argues, these rivers point to the need for a new historical approach that registers the connections between parts of the Southeast Asian massif through to the expansive plain land and the vast coastal rim of the Bay of Bengal and the China Seas. A connection that could be framed through the concept of Holon.

Analysis of Drone Surveying Using a Low-Cost PPK Kit (PPK Kit를 활용한 드론 측량 분석)

  • Park, Junho;Kim, Taerim
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.4
    • /
    • pp.41-52
    • /
    • 2021
  • With the popularization of drones and the ease of use of the Global Navigation Satellite System (GNSS), drone photogrammetry for terrain information has been widely used. Drone photogrammetry enables the realization of high-accuracy three-dimensional topography for the entire area with less effort and time compared to the past direct survey using GNSS or total station. From 3-D topographic data, various topographical analysis is possible. To improve the accuracy of drone photogrammetry, direct GCP surveying in the field is essential, and the numbers and reasonable positioning of GCPs are very important. In the case of beaches or tidal flats on the west coast of Korea, the numbers and location of GCPs are important factors in efficient drone photogrammetry because of the size of the area, difficulties of movement, and the risk from tides. If the RTK (Real-time kinematic) or PPK (Post-processed kinematic) method is used, the increased accuracy of the drone's location enables high-accuracy photogrammetry with a small number of GCPs. This study presents an efficient drone photogrammetry method in terms of time and economy by comparing and analyzing the results of drone photogrammetry using Non-PPK with low-cost PPK-Kit, based on the tests of various numbers and locations of GCPs in the university field including various slopes and structures like coastal terrain.

A Study on Surface Landscape Change and Sedimentary Environment of the Dongcheon Estuary through Aerial Photographs and Sediment Analysis (항공사진 및 퇴적물 분석을 통한 순천 동천하구의 지표경관 변화 및 퇴적환경 연구)

  • Lee, Ye-Seul;Lim, Jeong-Cheol;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.1
    • /
    • pp.35-50
    • /
    • 2021
  • In this study, we analyzed the changes in the topographical landscape and the sedimentary environment to evaluate the ecological value of the Dongcheon Estuary and protect the wetland, and presented the conservation management method of the Dongcheon Estuary. Based on the result of topographical landscape analysis, agricultural land tended to decrease continuously, and artificial structures gradually increased. Moreover, in sediment analysis, the Dongcheon Estuary showed both the characteristics of river sediments and coastal sediments, and in some areas problems such as acidification and nutritional imbalance appeared. Therefore, in order to protect and manage the Dongcheon Estuary with high ecological value, it is necessary to limit the development around micro topography and minimize the artificial damage in the Dongcheon Estuary. In addition, efforts such as securing facilities for reducing pollutants and freshwater wetlands for pollutants, that flow in from nonpoint pollutants are required.

A Study on the Micro-Topography Landscape Characteristics and Waterfront Landscape Style of Waterfront in Korean Jingyeong Landscape Painting (겸재 정선의 진경산수화에 나타난 수변의 미지형 경관 특성과 하경양식)

  • Kim, Yong-Hee;Kang, Young-Jo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.1
    • /
    • pp.26-38
    • /
    • 2019
  • This study is based on the analysis of the characteristics of waterfront scenery. Recently, waterfront development has expanded residentially, commercially and into leisure space. In the development of the waterfront, it is necessary to apply designs suitable for urban and various other waterfront areas. In this study, the natural scenery of the waterfront was researched with respect to the Korean Jingyeong landscape paintings and the main elements of the scenery were analyzed. In this study, 105 painting of Korean Jingyeong landscapes paintings were selected for the analysis of the waterside scenery. The paintings of Jeong Seon were studied to categorize streams topographically into mountainous, upper, middle, lower, and ocean types. In addition, major micro-topography elements, which are 13 water image elements and 13 staffage elements were analyzed. The main waterfront landscape elements are divided into 13 types. The waterfalls were divided into long waterfalls, short waterfalls, cascading waterfalls, and other aspects considered were line stream, curve stream, multi-curve stream, pond, water surface, flow surface, wave surface, rock side, pile sandy side, sandy side. There are 13 kinds of staffage elements, include pine forest, pine trees, fir trees, bamboo trees, willow trees, broadleaf tree, villages, houses, gazebo, boat, bridges, and people. The waterfront landscape by a river area was explained according to each characteristic of the waterfront landscape and staffage, and their changes were analyzed in each area. The 105 paintings were divided into 35 pieces of mountainous streams, 9 upper streams, 5 middle streams, 35 lower streams, and 21 oceans, and the change of each waterfront landscape and staffage was analyzed. Based on the topographical analysis of the waterfront landscape and staffage, the results can be summarized into 5 types of the waterfront landscape. Based on the micro-topographical characteristics of the waterfront landscape styles are as follow. In the mountainous streams, long waterfall and deep forest type are apparent, which depicts deep mountain waterfall scenery, and a multi-stream forest is the scenery of a picnic in the mountains, which is a representative form of mountainous streams landscape. In the upper-middle stream, the water-surface and gazebo type is predominant. In the lower stream, the sandy-gazebo typ scenery is predominant and the sandy depiction is unique to lower stream landscape. Pile sandy-dock type is life scenes where human activity highlighted, is a representative form of the lower stream landscapes. The characteristic of the coastal landscape is the serpentine rock scenery on the beach and the wave-serpentine rock type that forms the main coastal landscape. The study aims to propose significant design elements for a natural waterfront landscape planning based on the analysis of landscape in the paintings of Jeong Seon.

Numerical Model Application for Analysis of Flood Level Mitigation due to Retention-Basin (강변저류지 홍수위 저감효과 분석을 위한 수치모형 적용)

  • Cho, Gilje;Rhee, Dong Sop;Kim, Hyung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.495-505
    • /
    • 2014
  • The retention basin is a river-facility for the flood mitigation by storing the river flow temporarily. The new 3 retention basins are installed in these regions YeoJu, NaJu, YoungWol by the Large River Management Project. In this study, 1D and 2D numerical flow simulation are conducted to evaluate the reduction effect of the peak flood stage for the YeoJu retention basin. HEC-RAS and FLDWAV models are used for 1D simulation with the option of retention basin. CCHE2D model is used for 2D simulation with the same hydrograph used in 1D simulation. It is verified that the peak flood stage is reduced very largely about 0.13 m near the overtopping section of the levee in 1D simulation. It is verified that the peak flood stage is reduced very largely about 0.20 m at the upstream-end of the simulated reach in 2D simulation. 2D simulation for the retention basin is more reasonable because physical characteristics of topography in the model, and also more advantageous for the evaluation of the flow characteristics of the in- and outside of the retention basin on the results of simulation of this study.

Modern Sedimentary Environments Within the Gogunsan Archipelago (고군산군도 내측해역의 현생퇴적환경)

  • Lee, Hee-Jun;Kim, Min-Ji;Kim, Tae-Kyung
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.519-536
    • /
    • 2008
  • The relatively tranquil area within the Gogunsan Archipelago was for the first time investigated preliminarily with respect to modern sedimentological processes in association with the emplacement of the Saemangeum Dyke. Basic sedimentological observations, bathymetry and surface sediments were performed twice during 2006-2008 to compare the results and elaborate changes during that period of time. In addition, sediment dynamical observations were carried out with latest measuring equipment along two transects crossing the entrances of the archipelago, including 12-hour onboard measurements of current, suspended sediments, temperature, and salinity. This dataset was used to reveal hydrodynamic characteristics for spring season April-May and to estimate the direction and relative magnitude of the net flux of suspended sediments. There occurred three depositional areas (A to C) within the archipelago, where sediment texture was also changed. In area A, around Yami Island and the dyke, and area B, in the center of the archipelago, surface sediments became coarsened over the two-year period; sand content increased 5% at the expense of silt content in the former, whereas silt content increased 3% at the expense of clay content in the latter. By comparison, area C in the western entrance of the archipelago shows a textural trend of fining with more silt and clay (combined increase of 5%) at the expense of sand content. The accumulation of sediments in areas A and B is attributable to the sand and silt resuspended from the seabed sediments off sector 4 of the dyke during the winter. The origin of the fine materials depositing on area C is uncertain at present, although suspended sediments moving offshore around the archipelago may be one of the most likely candidates for the source. The temperature of seawater increased rapidly from $9-10^{\circ}C$ in April to $14-16^{\circ}C$ in May, whereas salinity remained more or less constant at 31-32%o during the two months. Both of these parameters showed little variations with depth through a tidal cycle, suggesting good mixing of seawater without any help of significant waves. The consistency of salinity during a tidal cycle also indicates no insignificant effects of freshwater from the rivers Mangyung and Donjin emitting through the opening gap near Sinsi Island. The suspended sediment concentrations were higher at the entrance between Sunyu and Sinsi islands than at the entrance between Hoenggyong and Sinsi islands, ranging from 20 and 30 mg/l and from 5 and 15 mg/l, respectively at the sea surface. Although tidal currents were variable across a transect between Sunyu and Sinsi islands, the currents across the entrance between Hoenggyong and Sinsi islands flowed consistently in the same direction all over the transect during a tidal cycle. The estimation of net flux of suspended sediments indicates that suspended sediments are transferred to the Gogunsan Archipelago mainly through a relatively deep trough adjacent to Sinsi Island toward the shallow area around Yami Island and the dyke.

THE ROLE OF SATELLITE REMOTE SENSING TO DETECT AND ASSESS THE DAMAGE OF TSUNAMI DISASTER

  • Siripong, Absornsuda
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.827-830
    • /
    • 2006
  • The tsunami from the megathrust earthquake magnitude 9.3 on 26 December 2004 is the largest tsunami the world has known in over forty years. This tsunami destructively attacked 13 countries around Indian Ocean with at least 230,000 fatalities, displaced people 2,089,883 and 1.5 million people who lost their livelihoods. The ratio of women and children killed to men is 3 to 1. The total damage costs US$ 10.73 billion and rebuilding costs US$ 10.375 billion. The tsunami's death toll could have been drastically reduced, if the warning was disseminated quickly and effectively to the coastal dwellers along the Indian Ocean rim. With a warning system in Indian Ocean similar to that operating in the Pacific Ocean since 1965, it would have been possible to warn, evacuate and save countless lives. The best tribute we can pay to all who perished or suffered in this disaster is to heed its powerful lessons. UNESCO/IOC have put their tremendous effort on better disaster preparedness, functional early warning systems and realistic arrangements to cope with tsunami disaster. They organized ICG/IOTWS (Indian Ocean Tsunami Warning System) and the third of this meeting is held in Bali, Indonesia during $31^{st}$ July to $4^{th}$ August 2006. A US$ 53 million interim warning system using tidal gauges and undersea sensors is nearing completion in the Indian Ocean with the assistance from IOC. The tsunami warning depends strictly on an early detection of a tsunami (wave) perturbation in the ocean itself. It does not and cannot depend on seismological information alone. In the case of 26 December 2004 tsunami when the NOAA/PMEL DART (Deep-ocean Assessment and Reporting of Tsunami) system has not been deployed, the initialized input of sea surface perturbation for the MOST (Method Of Splitting Tsunami) model was from the tsunamigenic-earthquake source model. It is the first time that the satellite altimeters can detect the signal of tsunami wave in the Bay of Bengal and was used to validate the output from the MOST model in the deep ocean. In the case of Thailand, the inundation part of the MOST model was run from Sumatra 2004 for inundation mapping purposes. The medium and high resolution satellite data were used to assess the degree of the damage from Indian Ocean tsunami of 2004 with NDVI classification at 6 provinces on the Andaman seacoast of Thailand. With the tide-gauge station data, run-up surveys, bathymetry and coastal topography data and land-use classification from satellite imageries, we can use these information for coastal zone management on evacuation plan and construction code.

  • PDF

A Note on the Modified Mild-Slope Equation (修正 緩傾斜方程式에 대한 小考)

  • Kyung Doug Suh;Woo Sun Park;Chang Hoon Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.2
    • /
    • pp.55-63
    • /
    • 1998
  • Recently the modified mild-slope equation has been developed by several researchers using different approaches, which, compared to the Berkhoff's mild-slope equation, includes additional terms proportional to the square of bottom slope and to the bottom curvature. By examining this equation, it is shown that both terms are equally important in intermediate-depth water, but in shallow water the influence of the bottom curvature term diminishes while that of the bottom slope square term remains significant. In order to examine the importance of these terms in more detail, the modified mild-slope equation and the Berkhoff's mild-slope equation are tested for the problems of wave reflection from a plane slope, a non-plane slope, and periodic ripples. It is shown that, when only the bottom slope is concerned, the mild-slope equation can give accurate results up to a slope of 1 in 1 rather than 1 in 3, which, until now, has been known as the limiting bottom slope for its proper application. It is also shown that the bottom curvature term plays an important role in modeling wave propagation over a bottom topography with relatively mild variation, but, where the bottom slope is not small, the bottom slope square term should also be included for more accurate results.

  • PDF