• Title/Summary/Keyword: Coastal Sediment

Search Result 676, Processing Time 0.032 seconds

Evaluation of Turbidity Generated by Cutter Suction and Grab Dredgers

  • Jin, Jae-Youll;Song, Won-Oh;Park, Jin-Soon;Kim, Sung-En;Oh, Young-Min;Yum, Ki-Dai;Oh, Jae-Kyung
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.179-184
    • /
    • 2003
  • It is inevitable for dredging to increase the suspended sediment concentration (SSC) of the ambient waters in some degree, which has the potential to affect the coastal ecosystem in various manners. Thus, quantitative under- standing of dredging-induced sediment loss is essential fur the reliable environmental impacts assessment. (omitted)

  • PDF

Turbidity Meter Calibrations Based on Grain Size Distribution of Trapped Suspended Material (포획된 부유물질의 입도분포를 고려한 탁도계 검교정)

  • 조홍연;김백운
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2003
  • Turbidity meter calibrations were conducted using bottom sediment and suspended material collected with a vertical array of sediment traps at the coastal water off Gaduk Island. Compared to the bottom sediment comprising sand fraction of approximately 6%, trapped suspended material was composed entirely of silt and clay fractions and showed a tendency to get finer as elevation from the sea-bed increases. Slope parameter of linear regression due to bottom sediment was of minimum value and values of those due to suspended material increased gradually as the height of sediment trap increases (i.e., sediment size decreases). This result shows that turbidity meter calibration using bottom sediment can cause an overestimation error in the calculation of suspended sediment concentration and that the error can reach up to 25% in case of this study. Therefore, it is suggested that the use of a corrected calibration curve based on grain size distribution of suspended material instead of bottom sediment may reduce the measurement error of suspended sediment concentration.

Seasonal Patterns of Sediment Supply to Coastal Foredune of Seungbong Island, Korea

  • Woo, Han-Jun;Seo, Jong-Chul;Kweon, Su-Jae;Je, Jong-Geel
    • Ocean and Polar Research
    • /
    • v.24 no.1
    • /
    • pp.39-45
    • /
    • 2002
  • The seasonal patterns of sediment supply were investigated during the period of June 1999 to June 2000 on a coastal foredune of Seungbong Island, Korea. Sediment supply was determined from measurements of geomorphic changes in the foredune and beach along six lines. Most sands were deposited on the dunefoot and foredune area during the winter and spring, from November to April. The largest amount of sands was deposited along the lines 5 and 6 near the sea-dike in the southern tip of the dune area. In general, the sand on the beach was gradually eroded in spring, summer and fall but deposited in winter. Total sediment accumulation over the study period was $484m^3$ for the foredune and $345m^3$ for the beach. The volume of the foredune increased in the winter and spring, whereas the volume of beach increased in the winter. Variation in sediment deposition appears to be controlled primarily by variations in the seasonal wind regime.

Neighboring Cage Fish Farming Affecting Water and Seabed Quality of the Jordanian Northern Gulf of Aqaba, Red Sea

  • Mohammad, Al-Zibdah;Firas, Oqaily;Tariq, Al-Najjar;Riyad, Manasrah
    • Ocean Science Journal
    • /
    • v.43 no.1
    • /
    • pp.9-16
    • /
    • 2008
  • Environmental qualities of coastal water and bottom sediment were assessed at Jordan's northernmost tip of Gulf of Aqaba to evaluate possible impacts of the bordering fish pen cages in Eilat. Results showed significant differences between surface and bottom water in the chemical and physical variables in the different months of the year (2004-2005). Chlorophyll a was also significantly higher in bottom water when compared to that of the offshore water. Nitrate and ammonia were significantly higher in bottom water than the surface water at each individual station. The upper 2 cm of sediment sample recorded higher values of total phosphorus and organic matter. Seasonality affected the content of total phosphorus, organic matter, redox potential and color especially at the sediment layer below 3 cm of the sediment core. The present investigation showed slight modification of water and sediment qualities but no clear sign of eutrophication was observed. However, to maintain sustainability of healthy environmental conditions at the northern tip of Gulf of Aqaba potentials of any possible environmental risks arising from the fish farms or any other coastal investment should be carefully considered.

Numerical Modeling of Cohesive Sediment Transport at Mokpo Coastal Zone (목포해역 점착성 퇴적물의 수송에 관한 수치모의)

  • Jung T.S.;Kim T.S.;Jeong D.K.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.1
    • /
    • pp.36-44
    • /
    • 2006
  • Cohesive sediment transport in coastal region has been studied by numerical modeling. A finite element numerical model was setup to simulate hydrodynamics and sediment transport in the coastal region with complex topography. Only physical features of observed sediments has been used to determine erosion rates of bottom sediments together with the previous research results. The simulation results using the simply determined equation of erosion rates were compared with time variations of the observed SS concentration and showed good agreements. In conclusion, this method can be used to estimate transport of cohesive sediment conveniently.

  • PDF

Construction and Application of the Hydraulic Scale Model for the Analysis of Sediment Transport by Tsumani (지진해일에 의한 토사이동 해석을 위한 수리모형장치 제작 및 적용성 평가)

  • Youm, Min Kyo;Lee, Baek Gun;Min, Byung Il;Lee, Jung Lyul;Suh, Kyung-Suk
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.201-207
    • /
    • 2013
  • Soil liquefaction by tsunami or wave induced currents can cause serious damages to coastlines and coastal infrastructures. Although liquefaction caused by regular waves over sea beds has been extensively investigated, studies of tsunami-induced liquefaction near coastal area have been relatively rare. In this work, the hydraulic scale model has been designed and constructed to investigate the variations of wave height and sediment transport by tsunami. The distorted hydraulic scale model based on the Froude similarity was adopted to represent hydrodynamics and sediment transport in a coastal area. The scale model was composed of control box, screw axis, wave paddle and rotating coastal structure.

Assessment of Sediment Yield according to Observed Dataset

  • Lee, Sangeun;Kang, Sanghyeok
    • Journal of Environmental Science International
    • /
    • v.25 no.10
    • /
    • pp.1433-1444
    • /
    • 2016
  • South Korea is a maritime nation, surrounded by water on three sides; hence, it is important to preserve in a sustainable manner. Most areas, especially those bordering the East Sea, have been suffering from severe coastal erosion. Information on the sediment yield of a river basin is an important requirement for water resources development and management. In Korea, data on suspended sediment yield are limited owing to a lack of logistic support for systematic sediment sampling activities. This paper presents an integrated approach to estimate the sediment yield for ungauged coastal basins by using a soil erosion model and a sediment delivery rate model in a geographic information system (GIS)-based platform. For applying the sediment yield model, a basin specific parameter was validated on the basis of field data, that, ranging from 0.6 to 1.2 for the 19 gauging stations. The calculated specific sediment yield ranged from 17 to $181t/km^2.yr$ in the various basin sizes of Korea. We obtained reasonable sediment yield values when comparing the measured data trends around the world with those in Korean basins.

Estimation of the Sediment Pollution in Coast of Gwangyang, Mokpo and Shinan, Korea (광양, 목포, 신안 주변해역 해저퇴적물의 오염도 평가에 관한 연구)

  • Kim, Do-Hee;Um, Hyeon-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.4
    • /
    • pp.303-308
    • /
    • 2013
  • We estimated sediment pollution by the analysis of COD and AVS. We also estimated the contents of Cu, Cd, Pb, Zn in sediment of Gwangyang bay, Mokpo inner bay and Shinan Bigum coastal area from 2011 July to 2012 February. In these results of sediment COD and AVS show III level pollution in Mokpo inner bay, however Gwangyang and Shinan Bigum coast show I level pollution. The results of Igeo show over 2 on the contents of Cu and Cd in Gwangyang bay and Mokpo inner bay. It also know that Igeo can more and detail estimate sediment pollution in industrial coastal area. These results show that it is suitable to estimated sediment pollution by COD and AVS with trace metal in industrial and initial polluted coastal area rather than analysis of COD and AVS only in coastal area.

A Research on Diagnosis of Institutional Problem and Improvement Plan for Management in Coastal Dredged Sediment - Case Study of Masan Bay - (연안준설토 관리의 제도적 문제점 진단 및 개선방안 연구 - 마산만 사례를 중심으로 -)

  • Yi, Yongmin;Oh, Hyuntaik;Lee, Dae In;Kim, Gui Young;Jeon, Kyeong Am;Kim, Hye Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.5
    • /
    • pp.444-455
    • /
    • 2015
  • In relation to the utilization and disposal of dredged sediment caused by coastal dredging project, we diagnosed the status of legal standard and system, and proposed the improvement plan. Dredging costal sediment distinguished the usage and the disposal by the Standard for the Beneficial Usage of Dredged Sediment. The site where disposal has been completed could be used as a site for developmental project. In case of the usage of dredged sediment for reclamation, we found that the adaptation of the Standard for Beneficial Usage of Dredged Sediment is appropriate for reclamation considering the characteristic of soil, the differences of variables, and the distinction of standard analysis methods. The current the Standard for Beneficial Usage of Dredged Sediment requires the improvement with the usage of dredging coastal sediment in the following. First, the Standard needs to include the standard of the discrimination for reclamation. Second, the current Standard is necessary to be divided by two levels, it needs to be mitigated considering human health risk. Third, it is necessary to consider both the marine environmental impact assessment and mitigation plan near coastal dredging area.

Application of Granulated Coal Ash for Remediation of Coastal Sediment (연안 저질 개선을 위한 석탄회 조립물의 활용)

  • Kim, Kyunghoi;Lee, In-Cheol;Ryu, Sung-Hoon;Saito, Tadashi;Hibino, Tadashi
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • This paper aims to explain the safety assessment and remediation mechanism of Granulated Coal Ash (GCA) as a material for the remediation of coastal sediments and to evaluate the improvement of the sediment in Kaita Bay, where GCA was applied. The concentrations of heavy metal contained in GCA and the dissolved amounts of heavy metal from GCA satisfied the criteria for soil and water pollution in Japan. The mechanisms on the remediation of coastal sediments using GCA is summarized as follows; (1) removal of phosphate and hydrogen sulfide (2) neutralization of acidic sediment (3) oxidation of reductive sediment (4) increase of water permeability (5) increase of soil strength (6) material for a base of seagrass. From the results obtained from the field experiment carried out in Kaita Bay, it was clarified that GCA is a promizing material for remediation of coastal sediment. This remediation technology can contribute to promote waste reduction in society and to decrease cost of coastal sediment remediation by applying GCA in other polluted coastal areas.