• Title/Summary/Keyword: Coast disaster

Search Result 140, Processing Time 0.025 seconds

Development of an Operational Storm Surge Prediction System for the Korean Coast

  • Park, Kwang-Soon;Lee, Jong-Chan;Jun, Ki-Cheon;Kim, Sang-Ik;Kwon, Jae-Il
    • Ocean and Polar Research
    • /
    • v.31 no.4
    • /
    • pp.369-377
    • /
    • 2009
  • Performance of the Korea Ocean Research and Development Institute (KORDI) operational storm surge prediction system for the Korean coast is presented here. Results for storm surge hindcasts and forecasts calculations were analyzed. The KORDI storm surge system consists of two important components. The first component is atmospheric models, based on US Army Corps of Engineers (CE) wind model and the Weather Research and Forecasting (WRF) model, and the second components is the KORDI-storm surge model (KORDI-S). The atmospheric inputs are calculated by the CE wind model for typhoon period and by the WRF model for non-typhoon period. The KORDI-S calculates the storm surges using the atmospheric inputs and has 3-step nesting grids with the smallest horizontal resolution of ${\sim}$300 m. The system runs twice daily for a 72-hour storm surge prediction. It successfully reproduced storm surge signals around the Korean Peninsula for a selection of four major typhoons, which recorded the maximum storm surge heights ranging from 104 to 212 cm. The operational capability of this system was tested for forecasts of Typhoon Nari in 2007 and a low-pressure event on August 27, 2009. This system responded correctly to the given typhoon information for Typhoon Nari. In particular, for the low-pressure event the system warned of storm surge occurrence approximately 68 hours ahead.

Analysis of Seasonal Morphodynamic Patterns using Delft3D in Anmok Coast (수치모델링을 통한 안목해안에서 계절에 따른 지형변동 패턴 분석)

  • Kim, Mujong;Son, Donghwi;Yoo, Jeseon
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.183-192
    • /
    • 2018
  • In recent years, coastal areas have been suffering from coastal erosion, such as destruction of coastal roads and military facilities. In this study, the Delft3D model was used to analyze the sediment transport pattern due to seasonal characteristics of summer and winter waves in Anmok beach of the East coast. Typhoon and high waves are mainly are coming from ENE direction in the summer season and the flows occur in the northward. In winter, high waves are incident from NE and the flows occur in the southward. These seasonal patterns were simulated by using Delft3D model. As for model input, reanalysis wave data of the past 38 years were used, and the seasonal patterns were analyzed by dividing the whole year into summer and winter season. The grid point of the 38 year reanalysis data is far from the Anmok beach, so the three model grid systems (wide grid -> intermediate grid -> detailed grid) are constructed. Most of the flows in the NW direction occurred in summer, but erosion and deposition was alternated along the coastline. In winter, sediment was deposited near Gangnung Port due to the southern flow and the southern port. Strong winter waves compared to summer tend to cause deposition around Gangnung Port throughout the year.

Flood Simulation and Risk Analysis Using GIS (공간정보를 이용한 홍수 범람 모의 및 리스크 분석)

  • Kim, Hyo-Suk;Yoon, Hong-Sik;Lee, Guen-Baek
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2015.11a
    • /
    • pp.209-211
    • /
    • 2015
  • 최근 지구온난화와 기후변화에 의한 가뭄과 홍수의 발생빈도가 증가하고 있는 상황이며 기후변화에 의한 재해는 사회시설과 국민생활에 직접적, 간접적 영향을 미칠 수 있기 때문에 전세계적으로 홍수에 관한 다양한 연구가 진행중에 있다. 본 논문에서는 홍수의 정확한 구조적 대책을 수립하기 위해 공간정보를 활용하여 FLO-2D를 이용한 홍수 범람 모의를 실시하고 그 결과를 토대로 ILWIS를 이용한 홍수 리스크 분석을 실시하였다.

  • PDF

Studies on the Characteristics of Growth of Pinus thunbergii planted in a Costal Sand Zone (해안방재림 조성지에 식재한 해송의 생장 특성에 관한 연구)

  • Kim, Hyun-Phil;Lee, Heon-Ho;Lee, Ju-Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.4
    • /
    • pp.656-662
    • /
    • 2012
  • This study has been undertaken to research the characteristics of growth of Pinus thunbergii Parl., which were planted in Uljin-gun, Gyeongbuk, Coast Disaster Prevention Forest. The total amount of 3600 trees of 9 sand dune stabilizing hedges were monitored in the past 4 years. The relationship between tree growth with environmental factors such as wind speed, soil conditions and sand-accumulation fences has been compared and investigated. To increase the growth increment of coastal disaster prevention forests, the development of sand-accumulating fences is the most important factor in controlling wind speed effectively. The monitoring for the maximizing wind-break effect of the sand-accumulating fences should be investigated when building coastal disaster prevention forests.

Proposal Methodology for Disaster Risk Analysis by Region Using RFM Model (RFM 모형을 활용한 지역별 재해 위험도 분석 방법론 제안)

  • Kim, TaeJin;Kim, SungSoo;Jeon, DaHee;Park, SangHyun
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.3
    • /
    • pp.493-504
    • /
    • 2020
  • Purpose: The purpose of this study is to propose an analytical methodology for selecting the priority of preventive projects in the course of carrying out disaster prevention projects that improve disaster-hazardous areas. Method: Data analysis was performed using RFM model which can divide data grade and perform target marketing based on Recency, Frequency, and Monetary. Result: The top 10% of the area with high RFM value was mainly in the East Sea and the South Sea coast, and the number of damage in private facilities was high. Conclusion: In this study, we used the RFM model to select the priority of disaster risk and to implement the regional disaster risk using GIS. These results are expected to be used as basic data for selecting priority project sites for disaster prevention projects and as basic data in the decision-making process for disaster prevention projects.

Analysis of the Effects on the Southeastern Coast of Korea by a Tsunami Originating from Hypothetical Earthquake in Japan (일본 지진공백역에서의 지진해일이 우리나라의 남동연안에 미치는 영향분석)

  • Kim, Do-Sam;Kim, Ji-Min;Lee, Kwang-Ho;Son, Byoung-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.64-71
    • /
    • 2007
  • The hypothetical earthquake located on the fault zone along the western coast of Japan, where sufficient time has elapsed since the last earthquake or an earthquake has not occurred yet, is known to possess significant potential energy. The possibility of earthquake activities occurring here in the future is high. It is expected that the resulting tsunamis will cause great damage to the East Sea coast of Korea and affect parts of the southern coast as well. In this study, tsunami that may be caused by a virtual earthquake that is expected in the hypothetical earthquake, along the western coast of Japan, will be estimated using numerical simulation. From this, the effect of the tsunami originating from the hypothetical earthquake on the southeastern coast of Korea will be evaluated by examining the water level rise due to the maximum water level rise and changing time, for each point along the southeastern coast. It will be possible to use the virtual results obtained like this as important basic materials in future disaster prevention plans and designs, for determining the direction of coastal development, for arranging seashore and harbor structures and to carry out wave resistant design for the southeastern coast of Korea.

Problems of Disaster Reporting in Korea - Case of Hebei Spirit Oil Spill in Taean-gun (허베이 스피리트호 기름유출사고를 통해 본 재난보도의 문제점)

  • Park, Dong-Kyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.241-248
    • /
    • 2009
  • On 7 December 2007, the Hong Kong registered tanker Hebei Spirit, laden with 209,000 tonnes of crude oil, was struck by the crane barge Samsung No 1, whilst at anchor about five miles off Taean on the West Coast in Korea. About 10,500 tonnes of crude oil escaped into the sea from the Hebei Spirit. The recent oil leakage from a tanker in seas off Taean has turned the sea farms and fishing areas on the country's western coast into a sea of oil. Analysts say the spill is considered as one of the world's devastating sea pollution cases involving oil. In our contemporary society where people are exposed to potential dangers in every aspect, no one can be free from such dangers. With an increase in human casualties due to disaster, disaster reporting plays a vital role in preventing and minimizing damages. Despite such enormous significance, however, Korean disaster reporting has not performed effectively. In this contexts, this study analyzed the problems of disaster reporting in Korea, with the case of Hebei Spirit oil Spill in Taean-gun. And, this study suggest the establish ways and means needed to improve the disaster reporting in Korea with the case of Hebei Spirit case.

Numerical Modelling of Typhoon-Induced Storm Surge on the Coast of Busan (부산 연안에서 태풍에 의한 폭풍해일의 수치모델링)

  • Cha-Kyum Kim;Tae-Soon Kang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.760-769
    • /
    • 2023
  • A numerical simulations were performed to investigate the storm surge during the passage of Typhoon Maemi on the coast of Busan. The typhoon landed on the southern coasts of Korean Peninsula at 21:00, September 12, 2003 with a central pressure of 950 hPa, and the typhoon resulted on the worst coastal disaster on the coast of Busan in the last decades. Observed storm surges at Busan, Yeosu, Tongyoung, Masan, Jeju and Seogwipo harbors during the passage of the typhoon were compared with the computed data. The simulated storm surge time series were in good agreement with the observations. The simulated peak storm surges were estimated to be 230 cm at Masan harbor, 200 cm at Yeosu harbor and Tongyoung harbor, and 75 cm at Busan harbor. The computed storm surges along the east coast of Busan measure 52 to 55 cm, exhibiting a gradual reduction in surge height as one moves further from the coast of Busan. Therefore, coastal inundation due to the storm surge in the semi-enclosed bay can induce great disasters, and the simulated results can be used as the important data to reduce the impact of a typhoon-induced coastal disaster in the future.