• Title/Summary/Keyword: Coarsening

Search Result 268, Processing Time 0.019 seconds

Recruitment and Succession of Riparian Vegetation in Alluvial River Regulated by Upstream Dams - Focused on the Nakdong River Downstream Andong and Imha Dams - (댐 하류 충적하천에서 식생이입 및 천이 - 낙동강 안동/임하 댐 하류하천을 중심으로 -)

  • Woo, Hyo-Seop;Park, Moon-Hyung;Cho, Kang-Hyun;Cho, Hyung-Jin;Chung, Sang-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.5
    • /
    • pp.455-469
    • /
    • 2010
  • Changes of geomorphology in alluvial river and vegetation recruitment on its floodplain downstream from dams are investigated both qualitatively and quantitatively focusing on the downstream of Andong dam and Imha dam on the Nakdong River. Results of the analyses of river morphology and bed material in the study site show a general trend of riverbed degradation with a max scour of 3 m and bed material coarsening from pre-dam value of 1.5 mm in D50 to post-dam value of 2.5 mm. Decrease in bed shear stress due to the decrease in flood discharge have caused vegetation recruitment on the once-naked sandbars. As result, the ratio of area of vegetated bars over total area of bars has drastically changed from only 7% in 1971 before the Andong dam (constructed in 1976) to 25% after it, and increased to 43% only three year after the Imha dam (constructed in 1992) and eventually to 74% by 2005. Analysis of the vegetation succession at Wicjeol subreach, one of the three subreaches selected in this study for detailed investigation, has clearly shown a succession of vegetation on once-naked sand bars to a pioneering stage, reed and grass stage, willow shrub and eventually to willow tree stages. At the second subreach selected, two large point bars in front of Hahoe Village seem to have maintained their sand surfaces without a signifiant vegetation recruitment until 2005. The sand bars, however, seem to have been invaded by vegetation recently, which warns river managers to have a countermeasure to protect the sand bars from vegetation invasion in order to conserve them for the historical village of Hahoe. On the other hand, recruitment and establishment of vegetation on the sand bars by artificial disturbance of the river, such as damming, can create an unique habitat of backmarsh in the sandy river, as shown in the case of Gudam Wetland, and may increase the biodiversity as compared with relatively monotonous sand bars. Last, the premise in this study that decrease in flood discharge due to upstream dams and decrease in bed shear stress can induce vegetation recruitment on the naked sand bars in the river has been verified with the analyses of the distribution of dimensionless bed shear stress along the selected cross section in each subreach.

Seasonal Variation of Surface Sediment Distribution and Transport Pattern Offshore Haeundae Beach Area (해운대 연안 표층퇴적물 분포의 계절변화와 이동)

  • Kim, Seok-Yun;Jeong, Joo-Bong;Lee, Byoung-Kwan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.1
    • /
    • pp.16-24
    • /
    • 2012
  • To study the seasonal pattern of sediment distribution and the transport tendency in Haeundae nearshore area; i) the grain size texture of surface sediment was examined in June, October, and December of 2007, and March and June of 2008, and secondary, ii) the transport tendency was studied by using a two-dimensional sediment transport model of Gao and Collins (1992), and finally, iii) the bathymetric changes were analyzed by using the data collected in February, May, August, and December of 2007 by Haeundae District Office. Spatial distribution of sediment texture, the tendency of sediment transport as well as the bathymetric change showed significant seasonal variations. From June to December of 2007, the eastern part of the Haeundae area, off Dalmaji Hill showed the coarsening of mean grain size with a prominent transport tendency toward the Haeundae beach. On the contrary, the western part of the area, off Dongbaek Island showed a fining trend of mean grain size, and the transport tendency toward the beach was relatively weakened. From December of 2007 to June of 2008, the mean grain size of Mipo Harbor became finer, and the transport tendency toward the central beach decreased. The mean grain size of Dongbaek Island became coarser, while the tendency increased in the direction of the beach. The areas of significant net accumulation and erosion were depicted based on the bathymetric changes between observation periods. During the period of February to May of 2007, net accumulation was observed on the eastern part of the study area, in front of Mipo Harbor. Erosion was generally occurred throughout the area from May to August of 2007. From August to December of 2007, erosion and accumulation was observed off Mipo Harbor and Dongbaek Island, respectively. The change of sediment facies also suggests the accumulation on the eastern coast during the spring, erosion around the entire coast during the summer, and accumulation on the western coast during the winter. The changes in the accumulation and erosion were most apparent during the summer when several typhoons have passed by, while unnoticeable during the spring.

Origin of Sandstone Fragments Within Core Sediments Obtained from Southwestern Continental Shelf of the Ulleung Basin, East Sea (동해 울릉분지 남서부 대륙붕에서 채취된 시추퇴적물내 사암편의 기원)

  • Lee, Eui-Hyeong;Lee, Yong-Kuk;Shin, Dong-Hyeok;Huh, Sik;Kim, Seong-Ryul;Jeong, Baek-Hoon;Han, Sang-Joon;Chun, Jong-Hwa
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.126-134
    • /
    • 2001
  • Several angular sandstone fragments (about 7 cm in longest diameter) occur in two piston cores, obtained from the submarine trough in the northeastern part of Korea Strait. The origin of the sandstone fragments and the paleoenvironment of trough sediment could be suggested from sedimentary facies analysis of cores and identification of ostracod within sandstone fragments. Echo characteristics around two core sites in submarine trough represent the prolonged bottom echoes with diffuse or no subbottom reflectors. The cores consist of a lower bioturbated mud and an upper gravelly sand sediments with sandstone/shell fragments. The bioturbated mud sediments show low water contents (27-44%) and high shear strength (19.2->37 kPa) compared with those of Holocene sediments (60-219% and 1.0-2.7 kPa, respectively) in the inner shelf and continental slope. However, clay contents (48-56%) of the bioturbated mud sediments are similar to those of fluviatile Holocene sediments in the inner shelf. The mean grain size of gravelly sand sediments ranges from 2.3 to 3.0 ${\phi}$ and shows coarsening upward with sandstone/shell fragments. The Holocene palimpsest in the continental shelf are composed of muddy sand sediments or sandy mud sediments (mean grain size: 4.6-7.6 ${\phi}$). Those suggest that two core sediments might be formed from Paleofluvial and paleocoastal deposits during sea-level lowstand. However, sandstone fragments mainly consist of quartz grains and bioclasts, with carbonate matrix, hollow pore, and glauconite. Two extinct ostracod species, Normanicythere sp. and Kotoracythere sp., are recovered in the sand-stone fragments of core EP-7, and they continued to exist from late Pliocene to early Pleistocene in cold water environment of this area. Thus, the sandstone fragments are interpreted to be formed at the paleocoastal environment derived from the Plio-Pleistocene outcrops exposed around the submarine trough during the LGM (Last Glacial Maximum) period.

  • PDF

Effect of cooling rate on precipitation hardening of a Pd-Cu-Ga-Zn metal-ceramic alloy during porcelain firing simulation (금속-세라믹용 Pd-Cu-Ga-Zn계 합금의 모의 소성 시 냉각 속도가 석출 경화에 미치는 영향)

  • Kim, Min-Jung;Shin, Hye-Jeong;Kwon, Yong-Hoon;Kim, Hyung-Il;Seol, Hyo-Joung
    • Korean Journal of Dental Materials
    • /
    • v.44 no.3
    • /
    • pp.207-216
    • /
    • 2017
  • The effect of cooling rate on precipitation hardening of a Pd-Cu-Ga-Zn metal-ceramic alloy during porcelain firing simulation was investigated and the following results were obtained. When the cooling rate was fast (Stage 0), the hardness of the alloy increased at each firing step and the high hardness value was maintained. When the cooling rate was slow (Stage 3), the hardness was the highest at the first stage of the firing, but the final hardness of the alloy after complete firing was lower. The increase in hardness of the specimens cooled at the cooling rate of Stage 0 after each firing step was caused by precipitation hardening. The decrease in hardness of the specimens cooled at the cooling rate of Stage 3 after each firing step was attributed to the coarsening of the spot-like precipitates formed in the matrix and plate-like precipitates. The matrix and the plate-like precipitates were composed of the $Pd_2(Cu,Ga,Zn)$ phase of CsCl-type, and the particle-like structure was composed of the Pd-rich ${\alpha}$-phase of face-centered cubic structure. Through the porcelain firing process, Cu, Ga, and Zn, which were dissolved in Pd-rich ${\alpha}$ particles, precipitated with Pd, resulting in the phase separation of the Pd-rich ${\alpha}$ particles into the Pd-rich ${\alpha}^{\prime}$ particles and ${\beta}^{\prime}$ precipitates composed of $Pd_2(Cu,Ga,Zn)$. These results suggested that the durability of the final prosthesis made of the Pd-Cu-Ga-Zn alloy can be improved when the cooling rate is fast during porcelain firing simulation.

Dataset of Long-term Investigation on Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (II) (내성천의 수문, 하도 형태, 경관 및 식생 특성에 관한 장기모니터링 자료 (II))

  • Lee, Chanjoo;Kim, Dong Gu;Hwang, Seung-Yong;Kim, Yongjeon;Jeong, Sangjun;Kim, Sinae;Cho, Hyeongjin
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.34-48
    • /
    • 2019
  • Naeseong Stream is a natural sand-bed river that flows through mountainous and cultivated area in northern part of Gyeongbuk province. It had maintained its inherent landscape characterized by white sandbars before 2010s. However, since then changes occurred, which include construction of Yeongju Dam and the extensive vegetation development around 2015. In this study, long-term monitoring was carried out on Naeseong Stream to analyze these changes objectively. This paper aims to provide a dataset of the investigation on channel morphology and vegetation for the period 2012-2018. Methods of investigation include drone/terrestrial photography, LiDAR aerial survey and on-site fieldwork. The main findings are as follows. Vegetation development in the channel of Naeseong Stream began around 1987. Before 2013 it occurred along the downstream reach and since then in the entire reach. Some of the sites where riverbed is covered with vegetation during 2014~2015 were rejuvenated to bare bars due to the floods afterwards, but woody vegetation was established in many sites. Bed changes occurred due to deposition of sediment on the vegetated surfaces. Though Naeseong Stream has maintained its substantial sand-bed characteristics, there has been a slight tendency in bed material coarsening. Riverbed degradation at the thalweg was observed in the surveyed cross sections. Considering all the results together with the hydrological characteristics mentioned in the precedent paper (I), it is thought that the change in vegetation and landscape along Naeseong Stream was mainly due to decrease of flow. The effect of Yeongju Dam on the change of the riverbed degradation was briefly discussed as well.

Effect of Solution Treatment Conditions on the Microstructure and Hardness Changes of Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu Alloys (Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu 합금의 미세조직 및 경도 변화에 미치는 용체화 처리 조건의 영향)

  • Sung-Bean Chung;Min-Su Kim;Dae-Up Kim;Sung-Kil Hong
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.337-346
    • /
    • 2022
  • In order to optimize the solution treatment conditions of Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu alloys, a series of heat treatment experiments were conducted under various solution treatment times up to 7 hours at 545℃, followed by a microstructural analysis using optical microscopy, FE-SEM, and Brinell hardness measurements. Rapid coarsening of eutectic Si particles was observed in the alloys during the first 3 hours of solution treatment but the size of those Si particles did not change at longer solution treatment conditions. Meanwhile, the degree of spheroidisation of eutectic Si particles increased until the solution treatment time was increased up to 7 hours. Q-Al5Cu2Mg8Si6 andθ-Al2Cu were observed in as-cast Cu-containing Al alloys but the intermetallic compounds were dissolved completely after 3 hours of solution treatment at 545℃. Depending on the initial Mg composition of the Al alloys, π-Al8FeMg3Si either disappeared in the alloy with 0.3wt% of Mg content after 5 hours of solution treatment or remained in the alloy with 0.5wt% of Mg content after 7 hours of solution treatment time. Mg and Cu content in the primary-α phase of the Al alloys increased until the solution treatment time reached 5 hours, which was in accordance with the dissolution behavior of Mg or Cu-containing intermetallic compounds with respect to the solution treatment time. From the results of microstructural changes in the Al-7Si-Mg-Cu alloys during solution treatment, it was concluded that at least 5 hours of solution treatment at 545℃ is required to maximize the age hardening effect of the present Al alloys. The same optimal solution treatment conditions could also be derived from Brinell hardness values of the present Al-7Si-Mg-Cu alloys measured at different solution treatment conditions.

Distribution Patterns of Surface Sediments of the Jangan Linear Sand Ridge off the Northern Taean Peninsula, in the Mid-west Coast of Korea (서해 중부 태안반도 북부 해역의 장안사퇴 표층퇴적물 분포 특성)

  • TAE SOO CHANG;EUNIL LEE;DO-SEONG BYUN;HWAYOUNG LEE;SEUNG-GYUN BAEK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.1
    • /
    • pp.14-27
    • /
    • 2024
  • Unlike the shelf sand ridges moribund in motion, nearshore sand ridges are highly mobile, sensitive to changes in ocean environments, thereby becoming of particular interest with respect to morphological changes. About 5 km off the Daesan port, the Jangan Sand Ridge has been undergoing severe subsea morphological change over the past two decades. Understanding the nature of sand ridges is critical to elucidate the causes of morphological changes. In this context, this study aims at understanding the characteristics and distribution patterns of surface sediments of the ridge and its vicinity. For this purpose, 227 sediment samples were acquired using a grab-sampler, the grain sizes being analysed by the sieve-pipette method. In addition, comparison of grain sizes in sediments between 1997 and 2021 was made in order to investigate the 25-years change in sediment composition. Surface sediments along the ridge axis are fine to medium sands with 2-3 phi in mean grain size, whereas, in the trough of ridge, the sediments are composed of gravels and muddy sandy gravels with mean sizes of -2 to -6 phi. Sediments in the crest of the ridge are well-sorted with normal distribution, on the other hand, the basal sediments are poorly-sorted and positively skewed. Along the ridge crest, the sediments are negatively skewed. From 1997 to 2021, the ridge sediments became largely coarser about 0.5 phi. Such coarsening trend in mean grain size can be explained either by elimination of fine sediments during high waves in winter or elimination of fines suspended during sand mining activities in the past. Spatial distribution pattern of surface sediments shows that ca. 30 m thick of the sand ridge itself overlies the thin relict gravels. The strong asymmetry of sand ridge, the exposure of ridge base, and reworked gravel lags suggest that Jangan sand ridge is probably sediment-deficit and hence erosive in nature at present.

Seasonal Morphodynamic Changes of Multiple Sand Bars in Sinduri Macrotidal Beach, Taean, Chungnam (충남 태안군 신두리 대조차 해빈에 나타나는 다중사주의 계절별 지형변화 특성)

  • Tae Soo Chang;Young Yun Lee;Hyun Ho Yoon;Kideok Do
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.203-213
    • /
    • 2024
  • This study aimed to investigate the seasonal patterns of multiple bar formation in summer and flattening in winter on the macrotidal Sinduri beach in Taean, and to understand the processes their formation and subsequent flattening. Beach profiling has been conducted regularly over the last four years using a VRS-GPS system. Surface sediment samples were collected seasonally along the transectline, and grain size analyses were performed. Tidal current data were acquired using a TIDOS current observation system during both winter and summer. The Sinduri macrotidal beach consists of two geomorphic units: an upper high-gradient beach face and a lower gentler sloped intertidal zone. High berms and beach cusps did not develop on this beach face. The approximately 400-m-wide intertidal zone comprises distinct 2-5 lines of multiple bars. Mean grain sizes of sand bars range from 2.0 to 2.75 phi, corresponding to fine sands. Mean sizes show shoreward coarsening trend. Regular beach-profiling survey revealed that the summer profile has a multi-barred morphology with a maximum of five bar lines, whereas, the winter profile has a non-barred, flat morphology. The non-barred winter profiles likely result from flattening by scour-and-fill processes during winter. The growth of multiple bars in summer is interpreted to be formed by a break-point mechanism associated with moderate waves and the translation of tide levels, rather than the standing wave hypothesis, which is stationary at high tide. The break-point hypothesis for multi-bars is supported by the presence of the largest bar at mean sea-level, shorter bar spacing toward the shore, irregular bar spacing, strong asymmetry of bars, and the 10-30 m shoreward migration of multi-bars.