• Title/Summary/Keyword: Coarse-to-Fine

Search Result 1,306, Processing Time 0.036 seconds

A Study on the Engineering Characteristic of scoria in Jeju-Do (제주도산 송이의 공학적 특성에 관한 연구)

  • Chun, Byung-Sik;Kim, Dong-Hoon;Kim, Young-Hun;Lee, Dong-Yeup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1630-1637
    • /
    • 2008
  • Jeju-do is a island formed by the volcanic activity and has more than 360 volcanic cones distributed widely along the long axis of the elliptically shaped island. The volcanic cones consist mainly of scoria, so called "Song-I" in the local dialect. In this study the chemical and soil mechanical properties of scoria being very different from those of the inland were investigated with the various tests. In the sieve-passing test the particle size of scoria had more than 10 of uniformity coefficient and gradation coefficient of 1 ~ 3, showing relatively homogenous distribution. Based on the uniformity classification, scoria was assorted into GW. In the large scale direct shear tested for measuring the mechanical strength of scoria the internal friction angle of red scoria was $37^{\circ}$ and that of black scoria was $36^{\circ}$. This indicated that there was no difference in the mechanical strength between two types of scoria. On the other hand, red and black scoria had $1.24{\times}10^{-3}$ to $3.55{\times}10^{-2}$ cm/sec of k values for the static water level permeability, thus being classified into a coarse or fine sand as compared with that representing the saturated soil. They also had 1.411 to $1.477\;g/cm^3$ of notably low $r_{dmax}$ values for the compaction test as compared with common soil, which was considered to be due to their low specific gravity and high porosity. In conclusion, the soil mechanic properties of scoria obtained from this study are thought to be very helpful for reducing lots of trial and error happening in the civil engineering construction.

  • PDF

Analysis of and Ideas for Improving Descriptions of Igneous Rock Textures in High School Earth Science II Textbooks (고등학교 지구과학 II 교과서에서 화성암의 조직에 대한 용어 분석)

  • Koh, Jeong-Seon;Yun, Sung-Hyo;Han, Jong-Soo
    • Journal of the Korean earth science society
    • /
    • v.29 no.3
    • /
    • pp.305-314
    • /
    • 2008
  • The purpose of this study is to analyze the concept of igneous rock textures and to uncover incorrect descriptions regarding the concept found within high school Earth Science II course seventh curriculum textbooks. Based upon this analysis suggestions will be made so as to improve descriptions regarding the concept of igneous rock texture. At least some incorrect descriptions regarding igneous rock texture were found in all the textbooks examined. Textures of volcanic rocks are described as being either fine-grained and glassy or porphyritic, while those of plutonic rocks are described as hollocrystalline, granular, coarse-grained or equigranular. These descriptions may contribute to forming and/or reinforcing misconceptions about both the classification criteria for, as well as the general concept of igneous rock textures. Therefore, some improvement schemes for the classification of igneous rock textures have been suggested. These schemes suggest that volcanic rocks be classified as either aphanitic or porphyritic, while plutonic rocks be classified as phaneritic, hollocrystalline or equigranular according to granularity, crystallinity, and both the absolute and relative sizes of the crystals within the rock.

A Study on Performance for Camouflage of Domestic and Foreign Combat Uniforms (국내·외 전투복의 카무플라주(Camouflage) 성능 연구)

  • Kang, Jinwoo;Lee, Minhee;Hong, Seongdon;Moon, Sunjeong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.6
    • /
    • pp.1025-1033
    • /
    • 2016
  • It is important to compare and analyze digital camouflage from different countries to promote the continuous development of a camouflage combat uniform. This effort should lead to developing a camouflage pattern suitable for the domestic environment and expand its performance of night camouflage. This study investigates digital camouflage by comparing camouflage fabrics sampled from Korea and eight other countries (USA, UK, Singapore, Croatia, Colombia, and Mongolia) in terms of textile, near-infrared reflectivity of colors, and color distribution. First, the fabric construction of camouflage from Korea, UK, US, Singapore, Span, and Croatia were all characterized by derivative plain weaves, while derivative twill weaves were generally used in Croatia and Mongolia. It is assumed that derivative plain weaves are adopted to improve the tearing strength of fine yarns. However, twill weaves enhance the flexibility of coarse yarn fabrics. Next, reflectivity change was analyzed based on camouflage color. The reflectivity of a combat uniform in Korea, Colombia, Croatia, and UK increased before 780nm in the visible light range, but remained consistent from 800nm which falls under the near-infrared range. In contrast, camouflage samples in Mongolia, Span, Singapore and USA showed a gradual increase of reflectivity in the near-infrared range. Finally, the color distribution analysis of digital camouflage found that camouflage of countries with desert or woodland combat settings dominantly contained brown colors. It indicates the color pattern consideration of different geographic regions is important to determine camouflage performance. This research involves basic study that will have implications for developing patterns and colors suitable for the South Korean environment and expand its use as night camouflage that helps achieve continuous improved camouflage performance.

The FASCO BMA based on Motion Vector Prediction using Spatio-temporal Correlations (시공간적 상관성을 이용한 움직임 벡터 예측 기반의 FASCO 블럭 정합 알고리즘)

  • 정영훈;김재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1925-1938
    • /
    • 2001
  • In this paper, a new block-matching algorithm for standard video encoder is presented. The slice competition method is proposed as a new scheme, as opposed to a coarse-to-fine approach. The order of calculating the SAD(Sum of Absolute Difference) to fad the best matching block is changed from a raster order to a dispersed one. Based on this scheme, the increasing SAD curve during its calculation is more linear than that of other curves. Then, the candidates of low probability can be removed in the early stage of calculation. And new MV prediction technique with an adaptive search range scheme also assists the proposed block-matching algorithm. As a result, an average of 13% improvement in computational power is recorded by only the proposed MV prediction technique. Synthetically, the computational power is reduced by 3977∼77% than that of the conventional BMAs. The average MAD is always low in various sequences. The results are also very close to the MAD of the full search block-matching algorithm.

  • PDF

A Study on the Gating System and Simulation for Gravity Casting of ZnDC1 Worm Gear (아연 합금 웜기어의 중력 주조 공정을 위한 주조 방안 설계 및 해석에 관한 연구)

  • Lee, Un-Gil;Kim, Jae-Hyun;Jin, Chul-Kyu;Chun, Hyeon-Uk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.589-596
    • /
    • 2021
  • In this study, the optimum gating system was designed, and the two zinc alloy worm gears were manufactured in single process by applying a symmetrical gating system with 2 runners. The SRG ratio is set to 1 : 0.9 : 0.6, and the cross-sectional shapes such as sprue, runner and gate are designed. In order to determine whether the design of the gating system is appropriate, casting analysis was carried out. It takes 4.380 s to charge the casting 100%, 0.55 to 0.6 m/s at the gates and solidification begins after the casting is fully charged. The amount of air entrapment is 2% in the left gear and 6% in the right gear. Hot spots occurred in the center hole of the gear, and pores were found to occur around the upper part of the hole. Therefore, the design of the casting method is suitable for worm gears. CT analysis showed that all parts of worm gear were distributed with fine pores and some coarse pores were distributed around the central hole of worm gear. The yield strength and tensile strength were 220 MPa, 285 MPa, and the elongation rate was 8%. Vickers hardness is 82 HV.

Ground Penetrating Radar Imaging of a Circular Patterned Ground near King Sejong Station, Antarctica

  • Kim, Kwansoo;Ju, Hyeontae;Lee, Joohan;Chung, Changhyun;Kim, Hyoungkwon;Lee, Sunjoong;Kim, Jisoo
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.257-267
    • /
    • 2021
  • Constraints on the structure and composition of the active layer are important for understanding permafrost evolution. Soil convection owing to repeated moisture-induced freeze-thaw cycles within the active layer promotes the formation of self-organized patterned ground. Here we present the results of ground penetrating radar (GPR) surveys across a selected sorted circle near King Sejong Station, Antarctica, to better delineate the active layer and its relation to the observed patterned ground structure. We acquire GPR data in both bistatic mode (common mid-points) for precise velocity constraints and monostatic mode (common-offset) for subsurface imaging. Reflections are derived from the active layer-permafrost boundary, organic layer-weathered soil boundary within the active layer, and frozen rock-fracture-filled ice boundary within the permafrost. The base of the imaged sorted circle possesses a convex-down shape in the central silty zone, which is typical for the pattern associated with convection-like soil motion within the active layer. The boundary between the central fine-silty domain and coarse-grained stone border is effectively identified in a radar amplitude contour at the assumed active layer depth, and is further examined in the frequency spectra of the near- and far-offset traces. The far-offset traces and the traces from the lower frequency components dominant on the far-offset traces would be associated with rapid absorption of higher frequency radiowave due to the voids in gravel-rich zone. The presented correlation strategies for analyzing very shallow, thin-layered GPR reflection data can potentially be applied to the various types of patterned ground, particularly for acquiring time-lapse imaging, when electric resistivity tomography is incorporated into the analysis.

Experimental study of welding effect on grade S690Q high strength steel butt joint

  • Chen, Cheng;Chiew, Sing Ping;Zhao, Mingshan;Lee, Chi King;Fung, Tat Ching
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.401-417
    • /
    • 2021
  • This study experimentally reveals the influence of welding on grade S690Q high strength steel (HSS) butt joints from both micro and macro levels. Total eight butt joints, taking plate thickness and welding heat input as principal factors, were welded by shielded metal arc welding. In micro level, the microstructure transformations of the coarse grain heat affected zone (CGHAZ), the fine grain heat affected zone (FGHAZ) and the tempering zone occurred during welding were observed under light optical microscopy, and the corresponding mechanical performance of those areas were explored by micro-hardness tests. In macro level, standard tensile tests were conducted to investigate the impacts of welding on tensile behaviour of S690Q HSS butt joints. The test results showed that the main microstructure of S690Q HSS before welding was tempered martensite. After welding, the original microstructure was transformed to granular bainite in the CGHAZ, and to ferrite and cementite in the FGHAZ. For the tempering zone, some temper martensite decomposed to ferrite. The performed micro-hardness tests revealed that an obvious "soft layer" occurred in HAZ, and the HAZ size increased as the heat input increased. However, under the same level of heat input, the HAZ size decreased as the plate thickness increased. Subsequent coupon tensile tests found that all joints eventually failed within the HAZ with reduced tensile strength when compared with the base material. Similar to the size of the HAZ, the reduction of tensile strength increased as the welding heat input increased but decreased as the thickness of the plate increased.

Coconut shell waste as an alternative lightweight aggregate in concrete- A review

  • Muhammad Fahad, Ejaz;Muhammad ,Aslam;Waqas, Aziz;M. Jahanzaib, Khalil;M. Jahanzaib, Ali;Muhammad, Raheel;Aayzaz, Ahmed
    • Advances in materials Research
    • /
    • v.11 no.4
    • /
    • pp.299-330
    • /
    • 2022
  • This review article highlights the physical, mechanical, and chemical properties of coconut shells, and the fresh and hardened properties of the coconut shell concrete are summarized and were compared with other types of aggregates. Furthermore, the structural behavior in terms of flexural, shear, and torsion was also highlighted, with other properties including shrinkage, elastic modulus, and permeability of the coconut shell concrete. Based on the reviewed literature, concrete containing coconut shell as coarse aggregate with normal sand as fine showed the 28-day compressive strength between 2 and 36 MPa with the dried density range of 1865 to 2300 kg/m3. Coconut shell concretes showed a 28-day modulus of rupture and splitting tensile strength values in the ranges of 2.59 to 8.45 MPa and 0.8 to 3.70 MPa, respectively, and these values were in the range of 5-20% of the compressive strength. The flexural behavior of CSC was found similar to other types of lightweight concrete. There were no horizontal cracks on beams which indicate no bond failure. Whereas, the diagonal shear failure was prominent in beams with no shear reinforcements while flexural failure mode was seen in beams having shear reinforcement. Under torsion, CSC beams behave like conventional concrete. Finally, future recommendations are also suggested in this study to investigate the innovative lightweight aggregate concrete based on the environmental and financial design factors.

Grain Growth Behavior of Heat Treated Mg-0.6wt.%Zn-0.6wt.%Ca Alloy Sheet Manufactured via Twin Roll Casting and Hot Rolling (트윈롤 주조 후 열간압연된 Mg-0.6wt.%Zn-0.6wt.%Ca 합금 판재의 열처리에 따른 결정립 성장 거동)

  • Lee, Hee Jae;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.74-81
    • /
    • 2022
  • This study aims to mitigate the microstructural heterogeneity arising from the manufacture of magnesium alloy plates using the twin roll casting (TRC) process. Homogenization was introduced through hot rolling and heat treatment, followed by confirmation of observed changes in the microstructure. Following the TRC process, the hot rolled 2mm plate exhibited a dendritic cast structure tilted in the roll rotation direction, while central segregation were developed. This nonuniform structure and central segregation disappeared upon heat treatment, followed by recrystallization to form uniform and fine grains. Abnormal grain growth (AGG) was observed over the course of heat treatment; grains exhibiting AGG occupied up to 75% of the total area after having held the sample at 400℃ for 64 h. The formation of coarse grains was also observed during heat treatment at 340℃ over a relatively long duration, though the maximum grain size was significantly smaller than that corresponding to the heat treatment at 400℃. AGG in the 400℃ heat treatment occurred because of movement of the grain boundary, which had been fixed prior as a result of the grain boundary fixing effect of the precipitation phase. The re-dissolution of the Ca2Mg5Zn5 precipitated phase over the long duration of the high-temperature annealing process caused the surrounding grains to disappear and regrow.

Characteristics of Size-segregated Mass Concentrations of Indoor Aerosol Particles in University Buildings (대학건물 실내 에어로졸입자의 입경별 질량농도 특성)

  • Suh, Jeong-Min;Wang, Bin;Jang, Seong-Ho;Park, Jeong-Ho;Choi, Kum-Chan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.4
    • /
    • pp.453-461
    • /
    • 2014
  • Objective: Based on the fact that fine particles are more likely to produce negative influences on the health of occupants as well as the quality of indoor air compared to coarse particles, it is critical to determine concentrations of aerosol particles with different sizes. Thus, this study focused on the size distribution and concentrations of aerosol particles in university buildings. Method: Aerosol particles in indoor air were collected from four areas: corridors in buildings(In-CO), lecture rooms(In-RO), laboratories(In-LR), and a cafeteria(In-RE). Samples were also collected from outside for comparison between the concentrations of indoor and outdoor particles. For the collection of the samples, an eight stage non-viable cascade impactor was used. Result: The average concentration of $PM_{10}$ in the samples collected from indoor areas was $34.65-91.08{\mu}g/m^3$,and the average for $PM_{2.5}$ was $22.65-60.40{\mu}g/m^3$. The concentrations of the aerosol particles in the corridors, lecture rooms, and laboratories were relatively higher than the concentrations collected from other areas. Furthermore, in terms of mass median aerodynamic diameter(MMAD), the corridors and lecture rooms had higher numbers due to their characteristics, showing $2.36{\mu}m$ and $2.11{\mu}m$, respectively. Laboratories running an electrolysis experiment showed $1.58{\mu}m$, and the cafeteria with regular maintenance and ventilation had $1.96{\mu}m$. Conclusion: The results showed that the $PM_{10}$ concentrations of all samples did not exceed indoor air quality standards. However, the $PM_{2.5}$ concentration was over the standard and, in particular, the concentration of fine particles collected from the laboratories was relatively higher, which could be an issue for the occupants. Therefore, it is important to improve the quality of the indoor air in university buildings.