• Title/Summary/Keyword: Coarse size

Search Result 804, Processing Time 0.02 seconds

Application of DEM with Coarse Graining Method to Fluidal Material Behavior Analysis (유동성 재료의 동적 거동 해석을 위한 입자확대법 기반 DEM의 적용)

  • Yun, Taeyoung
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.23-30
    • /
    • 2017
  • PURPOSES : In this paper, the applicability of DEM to a coarse graining method was evaluated by simulating a series of minicone tests for cement paste. METHODS : First, the fundamental physical quantities that are used in a static liquid bridge model were presented with three basic quantities based on the similarity principle and coarse graining method. Then, the scale factors and surface tensions for six different sizes of particles were determined using the relationship between the physical quantities and the basic quantities. Finally, the determined surface tensions and radii were utilized to simulate the fluidal behavior of cement paste under a minicone test condition, and the final shape of the cement paste with reference DEM particle radii was compared with the final shape of the others. RESULTS : The simulations with adjusted surface tensions for five different radii of particles and surface tension showed acceptable agreement with the simulation with regard to the reference size of the particle, although disagreement increases as the sizes of the particle radii increase. It seems reasonable to increase the particle radii by at least 0.196 cm considering the computational time reduction of 162 min. CONCLUSIONS : The coarse graining method based on the similarity principle is applicable for simulating the behavior of fluidal materials when the behavior of the materials can be described by a static liquid bridge model. However, the maximum particle radius should be suggested by considering not only the scale factor but also the relationship of the particle size and number with the radius of the curve of the boundary geometry.

Composition of Size-Segregated Atmospheric Aerosol Collected at an Urban Roadside Environment in Jeju Area (제주지역 도로변 대기 중 에어로졸의 입경별 조성특성)

  • Hu, Chul-Goo;Kim, Su-Mi;Lee, Ki-Ho
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.79-93
    • /
    • 2020
  • To determine the size distributions of water-soluble inorganic ionic species (WSIS) in roadside aerosols, sampling experiments were carried out in the urban roadside area of Jeju City on August 2018 and January 2019 by using the eight-stage cascade impactor sampler. The mass of roadside aerosols were partitioned at 57% in fine fraction, 36-37% in coarse fraction, and 6-7% in giant fraction, regardless of summer and winter. The mass concentrations of WSIS except for Na+ and SO42- in roadside aerosols were higher in winter than in summer. The size distributions of Na+, Mg2+, Ca2+ and Cl- were characterized by bimodal types with coarse particle mode peaking around 3.3-4.7 ㎛ and 5.8-9.0 ㎛. The size distributions of NO3- and K+ shifted from a single fine mode peaking around 0.7-1.1 ㎛ in winter to bimodal and/or trimodal types with peaks around coarse mode in summer. SO42- and NH4+ showed a single fine mode peaking around 0.7-1.1 ㎛. The MMAD of roadside aerosols was lower than that of Na+, Mg2+, Ca2+ and Cl-. Based on the marine enrichment factors and the ratio values of WSIS and the corresponding value for sea water, the composition of roadside aerosols in Jeju City may be practically affected by terrestrial sources rather than marine source.

Synthesis of Mullite and Zeolite from Fly Ash Refined by Multi-Air Classification (다중자연낙하 공기분급에 의한 정제석탄회로부터 뮬라이트 및 제올라이트의 합성)

  • Hwang, Yeon;Bae, Kwang-Hyun
    • Resources Recycling
    • /
    • v.10 no.6
    • /
    • pp.29-34
    • /
    • 2001
  • Fly ash powders were refined and separated into fine and coarse size by multi-air classification, and each particle was used for synthesizing mullite and zeolite. Mullite was prepared by sintering the mixture of fine fly ash with mean size of 6.5 $\mu$m and $A1_2$$O_3$powder at above $1450^{\circ}C$. Zeolite was synthesized through hydrothermal reaction with coarse fly ash mean size of $56.3\mu$m in 3.5 M NaOH solution at $120^{\circ}C$. The whole range of particle size can be recycled through size classification into fine and coarse fractions, which are used for syntheses of inorganic materials.

  • PDF

The Experience Study on the Floating Properties of High Flow Concrete on volum of Coarse Aggregate used Admixture (굵은골재 체적에 따른 고유동콘크리트의 유동특성에 관한 실험적 연구)

  • Choi, Sung-Woo;Kim, Ho-So;Baek, Chul-Woo;Ban, Seong-Soo;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.751-754
    • /
    • 2004
  • There are many factors that affect on the flowing properties of high flowing concrete(HFC), which are fluidity, compactibility, non-segregation ability and fillingability. And because the aggregate which is one of the factors occupies high volume in concrete, it has a much effect on the properties of high flowing concrete according to its size, quality and quantity etc. This is an experimental study to analyze the effect of admixture and volume of coarse aggregate in concrete on the flowing properties of high flowing concrete. For this purpose, the kinds of admixture are fly-ash and blast furnace slag. Also volume of coarse aggregate in concrete are 280, 290, 300, 310, 320 $(\ell/m^3)$. The test of flowablity properties is slump-flow, Air content, V-lot, L-Flow. According to test results, it was found that the compactibility of HFC is more superior to use blast furnace slag than other, and according .to kind of admixture, most compatible volume of coarse are different. Also when used blast furnace slag, the volume of coarse are increased than used fly-ash.

  • PDF

Second order of average current nodal expansion method for the neutron noise simulation

  • Poursalehi, N.;Abed, A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1391-1402
    • /
    • 2021
  • The aim of this work is to prepare a neutron noise calculator based on the second order of average current nodal expansion method (ACNEM). Generally, nodal methods have the ability to fulfill the neutronic analysis with adequate precision using coarse meshes as large as a fuel assembly size. But, for the zeroth order of ACNEM, the accuracy of neutronic simulations may not be sufficient when coarse meshes are employed in the reactor core modeling. In this work, the capability of second order ACNEM is extended for solving the neutron diffusion equation in the frequency domain using coarse meshes. For this purpose, two problems are modeled and checked including a slab reactor and 2D BIBLIS PWR. For validating of results, a semi-analytical solution is utilized for 1D test case, and for 2D problem, the results of both forward and adjoint neutron noise calculations are exploited. Numerical results indicate that by increasing the order of method, the errors of frequency dependent coarse mesh solutions are considerably decreased in comparison to the reference. Accordingly, the accuracy of second order ACNEM can be acceptable for the neutron noise calculations by using coarse meshes in the nuclear reactor core.

Effects of Grain Size Distribution on the Shear Strength and Rheological Properties of Debris Flow Using Direct Shear Apparatus (직접전단장비를 이용한 토석류의 전단강도 및 유변학적 특성에 대한 입도분포의 영향 연구)

  • Park, Geun-Woo;Hong, Won-Taek;Hong, Young-Ho;Jeong, Sueng-Won;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.7-20
    • /
    • 2017
  • In this study, effects of grain size distribution on the shear strength and rheological properties are investigated for coarse- and fine-grained soils by using direct shear apparatus. Shear strengths are estimated for fine-grained soils with the maximum particle size of 0.075 mm and coarse-grained soils with the maximum particle size of 0.425 mm and fine contents of 17% prepared at dry and liquid limit states. The direct shear tests are conducted under the relatively slow shear velocity, which corresponds to the reactivated landslide or debris flow after collapse according to the landslide classification. In addition, for the evaluation of rheological properties, residual shear strengths for both fine- and coarsegrained soils prepared under liquid limit states are obtained by multiple reversal shear tests under three shear velocities. From the relationship between residual shear strengths and shear rates, Bingham plastic viscosity and yield stress are estimated. The direct shear tests show that cohesions of fine-grained soil are greater than those of coarse-grained soil at both dry and liquid limit states. However, internal friction angles of fine-grained soil are smaller than those of coarse-grained soil. In case of rheological parameters, the plastic viscosity and yield stress of fine-grained soils are greater than those of coarse-grained soils. This study may be effectively used for the prediction of the reactivated landslide or debris flow after collapse.

A Study on the Property of Dredging Soils Stratified by Two dimensional Segregating Sedimentation (2차원 분리퇴적에 의한 준설토의 성상에 관한 연구)

  • Kim, Hyeong-Joo;Shim, Min-Bo;Jeon, Hye-Sun;Lee, Min-Sun;Paek, Pil-Soon;Choe, Dae-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.481-489
    • /
    • 2006
  • Two dimensional diffusion model test was conducted to investigate the sedimentation properties and consolidation process of reclaimed ground using dredging coarse soil which is composed of passing amount 20 percentage and 45 percentage of #200 sieve size respectively. The passing amount of #200 sieve size affected on sedimentation properties. The coarse soil which is passing amount of 20 percent showed that the sedimentation structure was layered type and passing amount of 45 percentage was wall-partition type according diffusion distance. Furthermore, the water content of surface and section, and distribution of fine soil were changed according to diffusion distance. and the change amount of pore water pressure and strength property when soil is diffused, segregated and accumulated can be applied efficiently in design of dredging and reclamation.

  • PDF

An experimental study on performance of concrete with constituent materials of shotcrete (숏크리트 구성 재료에 따른 콘크리트 성능에 관한 실험적 연구)

  • Kim, Sang-Myung;Shin, Jin-Yong;Ma, Sang-Jun;Nam, Kwan-Woo;Kim, Ki-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.59-68
    • /
    • 2008
  • The experiment was carried out to investigate the influence of coarse aggregate, admixture, and accelerator on the properties of concrete. As the maximum size of coarse aggregate decreased from 13 mm to 8 mm, fluidity of fresh concrete declined but compressive strength and dynamic modulus of elasticity of hardened concrete increased remarkably. The mechanical properties of concrete substituted silica fume to the plain concrete improved, the compressive strength of that substituted blast furnace slag increased slightly. The hydration reaction and compressive strength of specimen with sodium luminate type accelerator were high at initial, but specimen with alkali free type accelerator improved largely in 28 days.

  • PDF

Rare earth element geochemistry of shelf sediments in the western part of Jeju Island, korea

  • Youn, Jeung-Su;Kim, Tae-Joung
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.58-58
    • /
    • 2010
  • The sediment geochemistry, including REE of surface and core samples in the western part off Jeju Island have been carried out in order to understand the provenance and hydrolic sorting. The sediment in the study area were primarily composed of coarse silt with a mean grain size of $2.8{\sim}82.8{\mu}m$. The ratios of TOC over total nitrogen (TN) showed that the study area sediments contained more organic matters of marine origin than those of terrigenous origin. The total A1203, Fe203, K20, MgO, and MnO contents and REE concentration of the fine sediments are higher than those of the coarse sediments. The higher Zr/Th and Zr/Yb ratios in coarse sediments relative to fine-grained detritus indicates sedimentary sorting. Grain size influence the REE concentrations of the study area sediment significantly. The < $63{\mu}m$ fraction of the sediment has higher REE concentration and different REE patterns when compared with those in bulk samples, due to the presence of REE-enrich heavy minerals. The REE distribution patterns of the western part of Jeju Island sediments are relatively enriched in most LREEs than the Yellow River sediment and depleted in the Changjiang River, but the LaN/YbN ratios are similar to the Changjiang sediment. The Eu/Eu* ratios ranged from 0.594~0.665(0.631) is much similar to the Yellow River sediment, possibly mixture of the sediments from these two rivers.

  • PDF

Monthly Variation in the Salmonella Mutagenicity by Suspended Particulate according to Particle Size in Seoul City (서울시 대기중 부유분진의 입도별 돌연변이원성의 월변화)

  • Jang, Jae-Yeon;Kim, Bak-Kwang;Jo, Seong- Joon;Chung, Yong
    • YAKHAK HOEJI
    • /
    • v.32 no.5
    • /
    • pp.362-369
    • /
    • 1988
  • Monthly variation of mutagenicity by airborne particulate were studied according to particle size of the particulate. Airborne particulates were collected in Shinchon of Seoul which is commocial and traffic area in 1986. And those were separately collected into two parts such as fine particle (less than $2.5{\mu}m$ aerodynamic diameter) and coarse particle (greater than $2.5{\mu}m$). Extractable organic matters(EOM) were extracted and mutagenicity of the EOM was tested in Salmonella thyphimurium TA 98 by Ames method. While the concentration of coarse particle did not show the seasonal variation, that of fine particle showed great seasonal variation. The contents and mutagenicity of EOM in fine particles were higher than those of coarse particles. So fine particles were expected to contribute to the 90% of mutagenicity in atmosphere by suspended particulates. The content of EOM and mutagenicity by suspended particulates in atmosphere were highest in January all the year around and also higher as much as 6 and 30 times than in July, respectively.

  • PDF