• Title/Summary/Keyword: Coarse size

Search Result 801, Processing Time 0.03 seconds

Correlation between Microstructure and Charpy Impact Properties of FCAW HAZ of Thick Steel Plates for Offshore Platforms (해양플랜트용 후판강의 FCAW HAZ 미세조직과 샤르피 충격 특성의 상관관계)

  • Lee, Hun;Lee, Hyunwook;Cho, Sung Kyu;Choi, Dongki;Kim, Hyoung Chan;Kwon, Yongjai;Lee, Jung Gu;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.497-504
    • /
    • 2019
  • In this study, the correlation between microstructure and Charpy impact properties of FCAW(Flux cored arc welding) HAZ(Heat affected zone) of thick steel plates for offshore platforms was investigated. The 1/4 thickness(1/4t) location HAZ specimen had a higher volume fraction of bainite and finer grain size of acicular ferrite than those of the 1/2 thickness (1/2t) location HAZ specimen because of the post heat effect during the continuous FCAW process. The Charpy impact energy at $-20^{\circ}C$ of the 1/4t location HAZ specimen was lower than that of the 1/2t location HAZ specimen because of the high volume fraction of coarse bainite. The Charpy impact energy at -40 and $-60^{\circ}C$ of the 1/2t location HAZ specimen were higher than those of the 1/2t location HAZ specimen because the ductile fracture occurred in the fine acicular ferrite and martensite regions. In the ductile fracture mode, the deformed regions were observed in fine acicular ferrite and martensite regions. In the brittle fracture mode, long crack propagation path was observed in bainite regions.

Combustion of Al-Ni Precursor Al3Ni Foam Manufacture of Composite Structure with Hollow Pipe and Filling of Foam and Investigation of Pore Condition (Al-Ni 전구체의 연소합성 발포에 의한 Al3Ni 폼과 할로우 파이프의 복합구조체 제작 및 폼의 충진성과 기공상태 조사)

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.617-622
    • /
    • 2019
  • In order to develop a process for manufacturing a composite structure of an intermetallic compound foam and a hollow material, the firing and pore form of the Al-Ni precursor in a steel pipe are investigated. When the Al-Ni precursor is foamed in a hollow pipe, if the temperature distribution inside the precursor is uneven, the pore shape distribution becomes uneven. In free foaming, no anisotropy is observed in the foaming direction and the pore shape is isotropic. However, in the hollow pipe, the pipe expands in the pipe axis direction and fills the pipe. The interfacial adhesion between $Al_3Ni$ foam and steel pipe is excellent, and interfacial pore and reaction layer are not observed by SEM. In free foaming, the porosity is 90 %, but it decreases to about 80 % in the foam in the pipe. In the pipe foaming, most of the pore shape appears elongated in the pipe direction in the vicinity of the pipe, and this tendency is more remarkable when the inside pipe diameter is small. It can be seen that the pore size of the foam sample in the pipe is larger than that of free foam, because coarse pores remain after solidification of the foam because the shape of the foam is supported by the pipe. The vertical/horizontal length ratio expands along the pipe axis direction by foaming in the pipe, and therefore circularity is reduced.

Analysis of Sedimentary Environment and Micro-Landform Changes Afterthe Construction of Artificial Structuresin the Tidal Flat of Anmyeondo Gagyeongju, Western Coast of Korea (인공구조물 건설 후 안면도 가경주 간석지의 퇴적환경 및 미지형변화 분석)

  • JANG, Dong-Ho;Ryu, Ju-Hyun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.1
    • /
    • pp.31-45
    • /
    • 2018
  • This study investigated the characteristics of sedimentary environment changes across a tidal flat in Gagyeongju of Anmyeondo Island. We performed a spatio-temporal analysis on the grain sizes composition of sediments and micro-landform changes during the winter from 2013 to 2016. The results showed that erosion was a dominant processthroughout the study flat, reducing the surface elevation even by 1 m around the upper sand flat. As a consequence, headlands have formed in the entire region of Gagyeongju village. In addition, erosion quickly progressed along the low-lying subtidal zone and tide way and, in contrast, sedimentation progressed in the mid-elevation tidal flat. We posit that a jetty, which had been constructed as a pier facility on the eastern part of the study area, interfered with the flow of tidal current, thereby enhancing these erosional processes. This is because such interference can block the supply of fine-textured sediments from the nearby Cheonsu Bay and therefore reduce surface elevation. According to the surface sediment analysis, the sediments were categorized into 7 sedimentary facies, and generally displayed a high ratio of silt and clay. The result of time-series analysis (2012-2013) showed that the sediments on the tidal flat became fine-grained, and that sorting became worse. However, the sediments on the subtidal zone, embayment and along inside of the jetty tended to be coarse-grained. In conclusion, the tidal flat microlandform change in the study area was caused by a disruption in the seawater circulation due to the jittery construction within the tidal flat, which had a direct effect on erosional and sedimentary environment processes.

Characteristics of Shear Behavior for Coarse Grained Materials Based on Large Scale Direct Shear Test (III) - Final Comprehensive Analysis - (대형직접전단시험을 이용한 조립재료의 전단거동 특성 (III) - 최종 종합 분석 -)

  • Lee, Dae-Soo;Kim, Kyoung-Yul;Hong, Sung-Yun;Oh, Gi-Dae;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.39-54
    • /
    • 2009
  • Large scale direct shear tests were carried out to analyze the shear behavior of crushed rocks at local representative quarries. Shear strength for each specimen was derived and the effects on shear behavior induced by the variation of factors such as particle size, water immersion, density, uniformity coefficient, and particle breakage were evaluated and quantitatively compared with previous studies. The opportunity was also taken to identify stress-dilatancy relation of crushed rocks following the energy-based theory and friction coefficients at critical state as well as peak friction angles and dilation angles were estimated. As a result of tests it was found that uniaxial compressive strength and particle breakage of the parent rocks have crucial effect on internal friction angles; in addition, dilatancy at the failure showed strong relationship as well.

Grain Growth Behavior of Heat Treated Mg-0.6wt.%Zn-0.6wt.%Ca Alloy Sheet Manufactured via Twin Roll Casting and Hot Rolling (트윈롤 주조 후 열간압연된 Mg-0.6wt.%Zn-0.6wt.%Ca 합금 판재의 열처리에 따른 결정립 성장 거동)

  • Lee, Hee Jae;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.74-81
    • /
    • 2022
  • This study aims to mitigate the microstructural heterogeneity arising from the manufacture of magnesium alloy plates using the twin roll casting (TRC) process. Homogenization was introduced through hot rolling and heat treatment, followed by confirmation of observed changes in the microstructure. Following the TRC process, the hot rolled 2mm plate exhibited a dendritic cast structure tilted in the roll rotation direction, while central segregation were developed. This nonuniform structure and central segregation disappeared upon heat treatment, followed by recrystallization to form uniform and fine grains. Abnormal grain growth (AGG) was observed over the course of heat treatment; grains exhibiting AGG occupied up to 75% of the total area after having held the sample at 400℃ for 64 h. The formation of coarse grains was also observed during heat treatment at 340℃ over a relatively long duration, though the maximum grain size was significantly smaller than that corresponding to the heat treatment at 400℃. AGG in the 400℃ heat treatment occurred because of movement of the grain boundary, which had been fixed prior as a result of the grain boundary fixing effect of the precipitation phase. The re-dissolution of the Ca2Mg5Zn5 precipitated phase over the long duration of the high-temperature annealing process caused the surrounding grains to disappear and regrow.

A New High Grain Yielding Forage Rye Cultivar, "Seedgreen" (종자 생산량이 많은 호밀 신품종 "씨드그린")

  • Han, Ouk-Kyu;Hwang, Jong-Jin;Park, Hyung-Ho;Kim, Dea-Wook;Oh, Young-Jin;Park, Tae-Il;Ku, Ja-Hwan;Kwon, Young-Up;Kweon, Soon-Jong;Park, Kwang-Geun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.2
    • /
    • pp.105-111
    • /
    • 2015
  • "Seedgreen" (Secale cereal L.), a new rye cultivar was developed by National Institute of Crop Science (NICS), RDA in 2013. It was developed from an open pollination from within 10 rye varieties or lines including "Chochun" in 1995. The line "SR95POP-S1-140-9-1-3-7-5-3" was selected for its excellent agronomic appearance, and was placed in yield trials for three years from 2008 to 2010. The new cultivar was designated "Homil50" and was placed in regional yield trials at the five locations around Korea from 2011 to 2013, during which time the name "Seedgreen" was given. This cultivar is an erect plant type and of a long size, with a dark-green leaf color, a yellowish-white colored, medium-diameter culm, and a brown-colored, medium-size grain. The heading and maturation dates of Seedgreen were April 22 and June 16, which were 3 days and 2 days earlier than that of "Gogu", respectively. Seedgreen also showed better winter hardiness and a greater resistance to lodging and wet injury compared to those of the check cultivar. Over three years, the average dry matter yield of Seedgreen was 8.3 ton $ha^{-1}$ (fresh yield = 39.8 ton $ha^{-1}$), which was harvested in late April and was lower than that of the check cultivar Gogu. The seed productivity of Seedgreen was approximately 4 ton $ha^{-1}$, which was 16 % more than that of the check. Seedgreen was higher to than Gogu in term of protein content (10.5% and 9.7%, respectively), total digestible nutrients (TDN) (58.3% and 57%, respectively), and TDN yield $ha^{-1}$ (4.81 ton and 4.77 ton, respectively). This cultivar is recommended as a fall sowing crop in areas where the average daily minimum-mean temperatures are higher than $-12^{\circ}C$ in January, and as a winter crop for whole-crop forage before the planting of rice or green manure around Korea.

The Fluctuation of Marine Aerosol Number Concentrations Related with Vertical Winds (연직풍에 따른 해양성 에어러솔 수 농도 변동에 관한 연구)

  • Park, Sung-Hwa;Jang, Sang-Min;Jung, Woon-Seon;Jeong, Jong-Hoon;Lee, Dong-In
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.259-268
    • /
    • 2012
  • To investigate the fluctuation of marine aerosol number concentration at each different size with vertical winds in ocean area, aerosol particles and vertical wind components were measured in the Ieodo Ocean Research Station, which is located to 419 km southwest of Marado, the southernmost island of Korea, from 8 to 22 June 2009. The Laser Particle Counter (LPC) and ultrasonic anemometer were used to measure the number of aerosol particles and vertical wind speed. Surface weather chart, NCEP/NCAR reanalysis data and sounding data were used to analyze the synoptic condition. The distribution of aerosol number concentration had a large fluctuation of bigger particles more than 1.0 ${\mu}m$ in diameter by vertical wind speed during precipitation. The aerosol particles larger than 1.0 ${\mu}m$ in diameter increased as the wind changed from downward to upward during precipitation. The aerosol number concentration of bigger size than 1.0 ${\mu}m$ in diameter increased about 5 times when vertical velocity was about 0.4 $ms^{-1}$. In addition, the accumulation and coarse mode aerosol number concentration decreased about 45% and 92%, respectively compared to concentrations during precipitation period. It is considered that vertical wind plays an important role for the increasing of coarse mode aerosol number concentration compared to the large aerosol particles sufficiently removed by the scavenging effect of horizontal winds. Therefore, the upward vertical winds highly contribute to the formation and increase in aerosol number concentration below oceanic boundary layer.

Characteristics and Formation conditions of the Rhodoliths in Wu Island beach, Jeju-do, Korea: Preliminary Report (제주도 우도의 홍조단괴 해빈 퇴적물의 특징과 형성조건 : 예비연구 결과)

  • 김진경;우경식;강순석
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.401-410
    • /
    • 2003
  • Three beaches of the Seogwang-ri coast in the western part of Wu Island, Jeju-do, are solely composed of rhodoliths (red algal nodules). The beach sediments are coarse sand to granule in size and they show the banded distribution according to size. Commonly the larger pebble-sized rhodoliths are concentrated near the rocky coast, resulting from the transportation of the nodules from shallow marine environments by intermittent typhoons. Based on the internal texture of the rhodoliths, it appears that crustose red algae, Lithophyllum sp., is the main contributor for the formation of the rhodolith. The coarse sand to granule-sized grains show that they started to grow from the nucleus as rhodoliths, but the surface was severely eroded by waves. However, the pebble to cobble-sized grains exhibit the complete growth pattern of rhodoliths and sometimes contain other calcareous skeletons. It is common that encrusting red algae are intergrown with encrusting bryozoan. The surface morphology of rhodolith tends to change from the concentric to domal shape towards the outer part. This suggests that the rhodolith grew to a certain stage by rolling, but it grew in more quiet condition without rolling as it became larger. Aragonite and calcite cements can be found in the pores within rhodoliths (conceptacle, intraskeletal pore in bryozoan, and boring), and this means that shallow marine cementation has occurred during their growth. Growth of numerous rhodoliths in shallow marine environment near the Seogwang-ri coast indicates that this area has suitable oceanographic conditions for their growth such as warm water temperature (about 19$^{\circ}C$ in average) and clear water condition due to the lack of terrestrial input of volcanoclastic sediments. Fast tidal current and high wave energy in the shallow water setting can provide suitable conditions enough for their rolling and growth. Typhoons passing this area every summer also influence on the growth of rhodoliths.

Food Sources of the Ascidian Styela clava Cultured in Suspension in Jindong Bay of Korea as Determined by C and N Stable Isotopes (탄소 및 질소안정동위원소 조성에 의한 남해안 진동만 양식 미더덕의 먹이원 평가)

  • Moon, Changho;Park, Hyun Je;Yun, Sung Gyu;Kwak, Jung Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.4
    • /
    • pp.302-307
    • /
    • 2014
  • To examine the trophic ecology of the ascidian Styela clava in an aquaculture system of Korea, stable carbon and nitrogen isotopes were analyzed monthly in S. clava, coarse ($>20{\mu}m$, CPOM) and fine particulate organic matters ($0.7<<20{\mu}m$, FPOM). CPOM (means: $-18.5{\pm}1.2$‰, $9.3{\pm}0.7$‰) were significantly higher ${\delta}^{13}C$ and ${\delta}^{15}N$ values than those ($-20.5{\pm}1.5$‰, $8.4{\pm}0.5$‰) of FPOM. S. clava had mean ${\delta}^{13}C$ and ${\delta}^{15}N$ values of $-18.9({\pm}1.7)$‰ and $11.6({\pm}0.7)$‰, respectively. S. clava were more similar to seasonal variations in ${\delta}^{13}C$ and ${\delta}^{15}N$ values of FPOM than those of CPOM, suggesting that they rely largely on the FPOM as a dietary source. In addition, our results displayed that the relative importance between CPOM and FPOM as dietary source for the ascidians can be changed according to the availability of each component in ambient environment, probably reflecting their feeding plasticity due to non-selective feeding irrespective of particle size. Finally, our results suggest that dynamics of pico- and nano-size plankton (i.e., FPOM) as an available nutritional source to S. clava should be effectively assessed to maintain and manage their sustainable aquaculture production.

Characteristics of Size-segregated Mass Concentrations of Indoor Aerosol Particles in University Buildings (대학건물 실내 에어로졸입자의 입경별 질량농도 특성)

  • Suh, Jeong-Min;Wang, Bin;Jang, Seong-Ho;Park, Jeong-Ho;Choi, Kum-Chan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.4
    • /
    • pp.453-461
    • /
    • 2014
  • Objective: Based on the fact that fine particles are more likely to produce negative influences on the health of occupants as well as the quality of indoor air compared to coarse particles, it is critical to determine concentrations of aerosol particles with different sizes. Thus, this study focused on the size distribution and concentrations of aerosol particles in university buildings. Method: Aerosol particles in indoor air were collected from four areas: corridors in buildings(In-CO), lecture rooms(In-RO), laboratories(In-LR), and a cafeteria(In-RE). Samples were also collected from outside for comparison between the concentrations of indoor and outdoor particles. For the collection of the samples, an eight stage non-viable cascade impactor was used. Result: The average concentration of $PM_{10}$ in the samples collected from indoor areas was $34.65-91.08{\mu}g/m^3$,and the average for $PM_{2.5}$ was $22.65-60.40{\mu}g/m^3$. The concentrations of the aerosol particles in the corridors, lecture rooms, and laboratories were relatively higher than the concentrations collected from other areas. Furthermore, in terms of mass median aerodynamic diameter(MMAD), the corridors and lecture rooms had higher numbers due to their characteristics, showing $2.36{\mu}m$ and $2.11{\mu}m$, respectively. Laboratories running an electrolysis experiment showed $1.58{\mu}m$, and the cafeteria with regular maintenance and ventilation had $1.96{\mu}m$. Conclusion: The results showed that the $PM_{10}$ concentrations of all samples did not exceed indoor air quality standards. However, the $PM_{2.5}$ concentration was over the standard and, in particular, the concentration of fine particles collected from the laboratories was relatively higher, which could be an issue for the occupants. Therefore, it is important to improve the quality of the indoor air in university buildings.