• 제목/요약/키워드: Coarse austenite grain

Search Result 22, Processing Time 0.026 seconds

Study on the hydrogen embrittlement crack susceptibility of stainless steel overlaid weld metal (1) (스테인레스강 Overlay용접부의 수소취화 균열감수성에 관한 연구 1)

  • 이영호
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.39-52
    • /
    • 1990
  • The research is to insure the soundness of the stainless steel overlaid weld metal(21/4Cr-IMo steel + SUS 309L) for a pressure vessel application. Detail studies were conducted for the PWHT influence on the micrstructure and intergranular corrosion characteristics of the overlaid weld metal as well as initiation of hydrogen embrittlement crack(or Disbonding) when welded metal are exposed to the hydrogen atmosphere. Hydrogen was experimentally charged to the overlaid weld metal in order to study PWHT effect on the susceptibility of hydrogen embrittlement crack. The results of this research are as follows: 1. At the bond region, austenite grain of the stainless steel side became coarsed and Cr23C6 type carbide was precipitated at the coarsed austenitic grain boundaries. Intergranular Corrosion width(by Straiss test) increased with increasing PWHT temperature and PWHT time.

  • PDF

Microstructure Evolution and Its Effect on Strength during Thermo-mechanical Cycling in the Weld Coarse-grained Heat-affected Zone of Ti-Nb Added HSLA Steel (Ti-Nb첨가 저합금강 용접열영향부에서의 열-응력 이력이 미세조직 및 기계적 성질에 미치는 영향에 관한 연구)

  • Moon, Joonoh;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.44-49
    • /
    • 2013
  • The influence of thermo-mechanical cycling on the microstructure and strength in the weld coarse-grained heat affected zone (CGHAZ) of Ti-Nb added low carbon HSLA steel was explored through Vickers hardness tests, nanoindentation experiments, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Undeformed and deformed CGHAZs were simulated using Gleeble simulator with different heat inputs of 30kJ/cm and 300kJ/cm. At high heat input of 300kJ/cm, the CGHAZ consisted of ferrite and pearlite and then their grain sizes were not affected by deformation. At low heat input of 30kJ/cm, the CGHAZ consisted of lath martensite and then the sizes of prior austenite grain, packet and lath width decreased with deformation. In addition, the fraction of particle increased with deformation and this is because the precipitation kinetics was accelerated by deformation. Meanwhile, the Vickers and nanoindentation hardness of deformed CGHAZ with 30kJ/cm heat input were higher than those of undeformed CGHAZ, which are due to the effect of grain refinement and precipitation strengthening.

Effect of Microstructure on Fracture Behavior of Multi-phase Low-density Steel (다상계 저비중강의 파괴거동에 미치는 미세조직의 영향)

  • Shin, Sun-Kyoung;Park, Seong-Jun;Cho, Kyung Mox
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.6
    • /
    • pp.306-316
    • /
    • 2013
  • Microstructure and fracture behavior of a multi-phase low-density steel were investigated. After hot-rolling and heat treatment, the microstructure of low-density steel was composed of coarse ferrite grains and elongated bands which include second phases such as austenite, martensite and ${\kappa}$-carbide depending on holding time during isothermal heat treatment. After tensile test, microcracks were observed at martensite or ${\kappa}$-carbide interface in the elongated bands. Coarse ferrite grains showed cleavage fracture behavior regardless of second phase. The cleavage fracture of ferrite could be attributed to their coarse grain size and solute atoms that increase ductile-to-brittle transition temperature of ferrite. Despite of the tendency of cleavage fracture in coarse ferrite grains, a specimen having coarse spheroidized ${\kappa}$-carbide particles in the elongated bands showed high total elongation of 30%. Thus, the easiness of plastic deformation in the elongated band seems to play an important role in retardation of cleavage crack formation in coarse ferrite grains.

Evaluation of Reheat Cracking Susceptibility with Simulated Heat Affected Zones in Cr-Mo-V Turbine Rotor Steel (CrMoV 터빈로터강에서 모의 열영향부 시험편을 이용한 재열균열 민감도평가)

  • 김광수
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.89-102
    • /
    • 1995
  • The evaluation of reheat cracking susceptibility in CrMoV turbine rotor steel was performed using thermally simulated heat affected zones. The examinations were carried out in terms of microstructural characterization, microhardness measurement and a Charpy type notch opening three point bend test. It was found that reheat cracking susceptibility increased as the peak temperature increased. This effect was due to the combined effects of the carbide dissolution and unrestricted grain growth at 1350.deg. C peak temperature. Reheat cracking susceptibility was estimated based on microhardness measurement and prior austenite grain size. It was established that for this particular material, reheat cracking in coarse grained heat affected zone can be eliminated if the microhardness is below about 360DPH and the grain size is below about 30.mu.m. It is evident that reheat cracking susceptibility can be eliminated or reduced by carefully controlling the welding parameters such that a refined structure is produced in the coarse grained heat affected zone.

  • PDF

Microstructural evolution of ultrafine grained TRIP low-carbon steel (초미세 결정립 TRIP 강의 미세조직 변화)

  • Lee, C.W.;Ko, Y.G.;NamGung, S.;Shin, D.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.263-266
    • /
    • 2009
  • Transformation induced plasticity (TRIP) steel consisting of ferrite, austenite, and bainite phases was regarded as an excellent candidate for automotive applications due to the good combination of ductility and strength. The aim of the present study was to understand the microstructural characteristics of ultrafine grained (UFG) TRIP low-carbon steel fabricated via equal channel angular pressing accompanied with intercritical- and isothermal-annealing treatments. When compared to coarse grained counterpart, only the volume fraction of austenite phase in UFG TRIP steel remained unchanged, but all other microstructural variables such as size and morphology were different. It was found that UFG TRIP steel showed the homogeneous distribution of each constituent phase, which was discussed in terms of annealing treatments done in this study.

  • PDF

Fatigue Crack Propagation of Super Duplex Stainless Steel and Time-Frequency Analysis of Acoustic Emission (수퍼 2상 스테인리스강의 피로균열 진전특성과 음향방출신호의 시간-주파수 해석)

  • Lee, Sang-Kee;Do, Jae-Yoon;Nam, Ki-Woo;Kang, Chang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.73-78
    • /
    • 2000
  • On this study, the fatigue crack propagation of super duplex stainless steel is investigated in conditions of various volume fraction of austenite phase by changing heat treatment temperature. And we analysed acoustic emission signals during the fatigue test by time-frequency analysis methods. As the temperature of heat treatment increased, volume fraction of austenite decreased and coarse grain was obtained. The specimen heat treated at $1200^{\circ}C$ had longer fatigue life and slower rate of crack growth. As a result of time-frequency analyze of acoustic emission signals during fatigue test, main frequency was $200{\sim}300kHz$ having no correlation with heat treatment and crack length, and 500kHz was obtained by dimple and separate of inclusion

  • PDF

Local brittle zone of offshore structural steel welds (해양구조용 강재의 국부취화영역에 관한 연구)

  • 김병천;엄정현;이종섭;이성학;이두영
    • Journal of Welding and Joining
    • /
    • v.7 no.2
    • /
    • pp.35-48
    • /
    • 1989
  • This study is concerned with a correlation of microstructure and local brittle zone (LBZ) in offshore structural steel welds. The influence of the LBZ on fracture toughness was investigated by means of simulated heat-affected zone (HAZ) tests as well as welded joint tests. Micromechanical processes involved in void and cleavage microcrack formation were also identified using notched round tensile tests and subsequent SEM observations. The LBZ in the HAZ of a multiphase welded joint is the interstitially reheated coarse grained HAZ, which is influenced by metallurgical factors such as effective grain size, the major matrix structure and the amount of high-carbon martensite-austenite (M-A) constituents. The experimental results indicate that Chirpy energy was found to scale monotonically with the amount of M-A constituents, confirming that the M-A constituent is the major microstructural factor controlling the HAZ toughness. In addition, voids and microcracks are observed to initiate at M-A constituents by the shear cracking process. Thus, the M-A constituent played an important role in initiating the voids and microcracks, and consequently caused brittle fracture.

  • PDF

Effects of Microalloying Elements on Microstructures and Toughness of Simulated HAZ in Quenched and Tempered Steels

  • Chang, W.S.;Yoon, B.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.40-45
    • /
    • 2003
  • A series of experiments has been carried out to investigate the effect of titanium, boron and nitrogen on the microstructure and toughness of simulated heat affected zone (HAZ) in quenched and tempered (QT) type 490MPa yield strength steels. For acquiring the same strength level, the carbon content and carbon equivalent could be lowered remarkably with a small titanium and boron addition due to the hardenability effect of boron during quenching process. Following the thermal cycle of large heat input, the coarsened grain HAZ (CGHAZ) of conventional quenched and tempered (QT) type 490MPa yield strength steels exhibited a coarse bainitic or ferrite side plate structure with large prior austenite grains. While, titanium and boron bearing QT type 490MPa yield strength steels were characterized by the microstructure in the CGHAZ, consisting mainly of the fine intragranular ferrite microstructure. Toughness of the simulated HAZ was mainly controlled by the proper Ceq level, and the ratio of Ti/N rather than titanium and nitrogen contents themselves. In the titanium­boron added QT steels, the optimum Ti/N ratio for excellent HAZ toughness was around 2.0, which was much lower than the known Ti/N stoichiometric ratio, 3.4. With reducing Ti/N ratio from the stoichiometric ratio, austenite grain size in the coarse grained HAZ became finer, indicating that the effective fine precipitates could be sufficiently obtained even with lower Ti/N level by adding boron simultaneously. Along with typical titanium carbo­nitrides, various forms of complex titanium­ and boron­based precipitates, like TiN­MnS­BN, were often observed in the simulated CGHAZ, which may act as stable nuclei for ferrite during cooling of weld thermal cycles

  • PDF

Effects of M-A Constituents on Toughness in the ICCG HAZ of SA508-cl.3 Pressure Vessel Steel (SA508-cl.3강의 ICCG HAZ의 인성에 미치는 M-A Constituentsm의 영향)

  • 권기선;김주학;홍준화;이창희
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.55-65
    • /
    • 1999
  • Metallurgical factors influencing toughness of the Intercritically Reheated Coarse-Grained Heat Affected Zone (ICCG HAZ) of multiple welded SA508-cl.3 Reactor Pressure Vessel Steel were evaluated. The recrystallized austenite formed along the prior austenite grain boundaries and late interfaced on heating to the intercritical range was transformed to bainite and/or martensite during cooling. The newly formed martensite always included some retained austenite(M-A constituents). The characteristics(amount, hardness, density, and size) of M-A constituents were found to be strongly associated with both peak temperature and cooling time(△t8/5(2)) of last pass. Toughness in the ICCG HAZ was deteriorated with increasing amount of M-A constituents which was increased with increasing the last peak temperature within the intercritical temperature range. Meanwhile, for the same intercritical peak temperature, toughness was decreased with increasing cooling time. When cooling time was short, the dominant factor influencing toughness of the ICCG HAZ was amount of M-A constituents. However, when cooling time was lengthened, the hardness difference between M-A constituents and softened matrix(tempered martensite) was found to be the dominant factor.

  • PDF

Microstructural Evolutions and Microhardness of the Heat Treated Ni-base Superalloy Weldment (Ni기 초합금 용접부의 열처리에 따른 미세조직 변화와 미세경도)

  • Kim, G.S.;Ji, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.5
    • /
    • pp.297-304
    • /
    • 2005
  • This study was performed to determine the repair weldability of the damaged Ni type superalloy used for gas turbine blade. The experimental works included the evaluation of the microstructures of the damaged blade, selection of the repair welding procedure, characterization of repair weldment and finding the heat treatment procedures for repaired weldment. The morphology of the microstructure for the base metal was composed of austenite matrix with cubical ${\gamma}^{\prime}$ phase, MC type coarse precipitates located within grain and fine $M_{23}C_6$ type precipitates decorated at grain boundaries. The repair welding process using 90 amp current exhibited the best weld properties showing no weld microcracks. The solution and aging heat treatments of the repaired weldment could recover the original service properties of the damaged blade.