• Title/Summary/Keyword: Coarse aggregate content

Search Result 140, Processing Time 0.028 seconds

Physical and Mechanical Properties of Polymer Concrete Using Recycled Aggregate (재생골재를 사용한 폴리머 콘크리트의 물리·역학적 특성)

  • Sung, Chan-Yong;Baek, Seung-Chul
    • Korean Journal of Agricultural Science
    • /
    • v.32 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • This study was performed to evaluate the physical and mechanical properties of polymer concrete using unsaturated polyester resin, initiator, heavy calcium carbonate, crushed gravel, recycled coarse aggregate, silica sand and recycled fine aggregate. The unit weight, compressive strength, flexural strength and dynamic modulus of elasticity were decreased with increasing the content of recycled aggregate. The unit weight, compressive strength, flexural strength and dynamic modulus of elasticity were showed in $2,127{\sim}2,239kg/m^3$, 80.5~88.3MPa, 19.2~21.5MPa and $254{\times}10^2{\sim}288{\times}10^2MPa$ at the curing age 7 days, respectively. Therefore, these recycled aggregate can be used for polymer concrete.

  • PDF

Material Properties Depending on the Maximum Aggregate Size and Fineness Modulus for Concrete Repair Materials (콘크리트 단면복구용 보수재료의 굵은 골재 최대치수 및 조립률에 따른 재료적 특성)

  • Sun-Mok Lee;Byung-Je Lee;Yun-Yong Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.62-69
    • /
    • 2023
  • Re-damage is frequently occurring for various reasons, including material factors, external factors, and factors caused by poor construction in concrete cross-section restoration work, so it is necessary to identify the cause and improve it. Cement-based materials are the most commonly used maintenance materials for concrete structures, and in particular, additional cross-sectional restoration work may be carried out due to re-damage such as cracks and excitement due to dry contraction of the repair material. In this study, a basic study was conducted to identify the characteristics of concrete while diversifying the maximum dimensions and assembly rate of thick aggregates to examine the effects of using thick aggregates in repair materials. As a result, the slump of concrete increased as the maximum size of thick aggregates increased, and the amount of air content was measured 1.88 to 2.35 times higher in the mixing using aggregates with a maximum aggregate size of 5 mm or more compared to the mixing group with a maximum aggregate size of 10 mm or more. It was found that compressive strength was greatly affected by the performance rate of thick aggregates. The compressive strength was measured the highest in the mixture using thick aggregates with the highest performance rate of 20 mm, and the compressive strength of the mixture with the lowest performance rate was more than 45%. As a result of the dry shrinkage measurement, the dry shrinkage was the lowest as the performance rate of the thick aggregate increased according to the change in the maximum dimensions and assembly rate of the thick aggregate, and the lowest performance rate was the largest in the mix. Through this study, it was confirmed that adjusting the particle size by diversifying the maximum dimensions and assembly rate of thick aggregates used in concrete structure repair materials can improve strength and workability and reduce dry shrinkage.

Experimental Study on the Water Content Formula of Fresh Concrete by Microwave Oven Drying Test Method (고주파 가열건조 시험방법에 의한 굳지 않은 콘크리트의 단위수량 추정식에 관한 실험적 연구)

  • Park, Min-Yong;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.2
    • /
    • pp.143-152
    • /
    • 2023
  • In this research, the microwave oven drying method was investigated as a potential accurate testing approach for determining the water content of fresh concrete. To do so, water content estimation formulas employed in three prominent oven drying test methods were selected, and the calculation principles for each equation, along with potential error factors arising during the actual testing process, were considered. Moreover, a concrete test was conducted to validate the possible error factors. Consequently, it was confirmed that estimation errors in the water content of fresh concrete can occur due to sample deviations arising during the wet screening process for creating mortar specimens or deviations in the coarse aggregate sampling quantity during the sample collection process.

Manufacturing artificial lightweight aggregates using coal bottom ash and clay (석탄 바닥재와 점토를 이용한 인공경량골재 제조)

  • Kim, Kang-Duk;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.277-282
    • /
    • 2007
  • The artificial lightweight aggregate (ALA) was manufactured using coal bottom ashes produced from a thermoelectric power plant with clay and, the sintering temperature and batch composition dependence upon physical properties of ALA were studied. The bottom ash (BA) had 13wt% coarse particle (>4.75mm) and showed very irregular shape so should be crushed to fine particles to be formed with clay by extrusion process. Also the bottom ash contained a many unburned carbon which generates the gas by oxidation and lighten a aggregate during a sintering process. Plastic index of green bodies decreased with increasing bottom ash content but the extrusion forming process was possible for the green body containing BA up to 40wt% whose plastic index and plastic limit were around 10 and 22 respectively. The ALA containing $30{\sim}40wt%$ BA sintered at $1100{\sim}1200^{\circ}C$ showed a volume specific density of $1.3{\sim}1.5$ and water absorption of $13{\sim}15%$ and could be appled for high-rise building and super-long bridge.

Effects of Relative Humidity and Temperature on the Transport of Chloride in the Concrete

  • Nam Jin-Gak;Hartt William H.;Kim Ki-Joon
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.821-828
    • /
    • 2005
  • To investigate the role of RH and temperature on the transport of chloride in the concrete, two groups of specimens were configured. For both groups, mix design was based on w/c=0.45, $400kg/m^3$ cement, $794kg/m^3$ fine aggregate and $858kg/m^3$ coarse aggregate. After specimen fabrication these were exposed to four different RH (35, 55, 75 and $95\%$ RH) and temperature (0, 20, 30 and $40^{\circ}C$) conditions. After 3 and 6 months $15\%$ NaCl exposure 5mm cores were taken. These cores were sliced and individual cores were ground to powder. In addition, to evaluate the effect of temperature on the chloride binding some powder samples were leached in the each of four temperature chambers. Chloride titration fur these was performed using FDOT acid titration method. Based upon the resultant data conclusions were reached regarding that 1) effective diffusion coefficient, $D_e$, increased with increasing exposure RH, suggesting that the size and number of water paths increased with elevated moisture content in the specimens, 2) $D_e$ increased with increasing temperature in the range of 0 to $40^{\circ}C$ possibly by elevated thermal activation of chloride ions and reduced chloride binding at higher temperature, 3) water soluble chloride concentration, $[Cl^-]_s$, increased with increasing temperature, and 4) chloride concentration profile for initially dry concrete specimens was higher than for the initially wet ones indicating pronounced capillary suction (sorption) occurred for the dry concrete specimens.

An Experimental Study on NOx Degradation Efficiency and Physical Characteristics of Maximum Size 40 mm Porous Concrete (굵은골재 최대치수 40 mm 투수 콘크리트의 물리적 특성과 질소산화물 제거에 관한 연구)

  • Hong, Chong-Hyun;Kim, Moon-Hoon;Ryu, Seong-Pil;Choung, Kwang-Ok
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.431-438
    • /
    • 2006
  • The strength, water permeability, and photo-degradation efficiency of NOx of porous concrete with a new concept were studied in this paper. The porous concrete was comprised of coarse aggregate of maximum size 40 mm, cement, silica fume, water and air-entraining(AE) water reducing agent. The strength of porous concrete was strongly related to its matrix proportion and compaction energy. An experimental test was carried out to study the parameters of cement proportions and silica fume content for pavement applications of porous concrete which were paving a footpath, a bikeway, a parking lot, and a driveway. The regressed equations of relation-ships between compressive strength and flexural strength, and coefficient permeability and void ratios were indicated as y=7.69x+71.74 and $y=0.42e^{0.28x}$. A method of making an air purification-functioning road, which was spraying a mixture of a photocatalyst, cement, and water onto the surface of the road, was suggested.

Nano-Silica effect on the physicomechanical properties of geopolymer composites

  • Khater, H.M.
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.181-195
    • /
    • 2016
  • Addition of nano-$SiO_2$ (NS) to geopolymer composites has been studied through measurement of compressive strengths, FTIR and XRD analysis. Alumino-silicate materials are coarse aggregate included waste concrete and demolished walls with its cementing binder, cement kiln dust (CKD) used and can possess a pronouncing activation for the geopolymer reaction resulting from the high alkali contents within. Materials prepared at water/binder ratios in a range of 0.30: 0.40 under curing of $40^{\circ}C$ and 100% Relative Humidity (R.H.), while the used activator is sodium hydroxide in the ratio of 2 wt. %. First, CKD is added in the ratio from 10 up to 50 wt., %, and the demolished walls was varied depending on the used CKD content, while using constant ratio of waste concrete (40 wt., %). Second step, depending on the optimum CKD ratio resulted from the first one (40 wt. %), so the control geopolymer mix composed of cement kiln dust, demolished walls and waste concrete in the ratio (40:20:40, wt %). Nano-silica partially replaced waste concrete by 1 up to 8%. Results indicated that, compressive strengths of geopolymer mixes incorporating nano-silica were obviously higher than those control one, especially at early ages and specially with 3%NS.

Evaluation of the Asph81t Mixture Performance with Waste Materials

  • Lee, Kwan-Ho;Lovell, C
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.17-34
    • /
    • 1996
  • The objective of this paper is to evaluate the asphalt mixture performance with pyrolyzed carbon black(CBP) and air -cooled iron blast furnace slag. Marshall mix design was performed to determine the optimum binder content, The optimum binder content ranged from 6.3 percent to 7.75 percent. Dynamic creep testing was carried out using mixtures at the optimum binder content. Based on the test results, the use of pyrolyzed carbon black and slag in the asphalt pavement showed a positive result, such as the increase of Marshall stability, the decrease of the strain rate and the decrease in the mix stiffness rate at high temperature(5$0^{\circ}C$) and 137.9 kPa confinement. Within the limits of this research. it was concluded that pyrolyzed carbon black as an additive and slag as a coarse aggregate could be used to produce an asphalt paving mixture that has good stability, stiffness, and rutting resistance.

  • PDF

Study on ECC Tensile Behavior due to Constrained Drying Shrinkage (구속된 건조수축에 따른 ECC의 인장거동에 관한 연구)

  • Lee, Do-Keun;Lee, Kyoung-Chan;Lee, Chi-Dong;Shin, Kyung-Joon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.367-374
    • /
    • 2019
  • Drying shrinkage in the hardened cement is known to change in volume by decreasing the moisture content in the hardened body, and it is known that the higher the W / C and the higher the content of the paste, the larger the drying shrinkage. In the case of ECC, more drying shrinkage occurs compared to concrete, since it does not contain coarse aggregate. Since ECC is an important material for tensile performance, the effect of restrained tensile stress on mechanical tensile behavior should be considered. The purpose of this study is to analyze the effect of stress caused by restraint on the tensile behavior of ECC. The mechanical properties of the specimens were tested by uniaxial tension tests with different restraints. As a result, the difference of tensile behavior according to restraint stress was observed and the cause was analyzed.

Develop a sustainable wet shotcrete for tunnel lining using industrial waste: a field experiment and simulation approach

  • Jinkun Sun;Rita Yi Man Li;Lindong Li;Chenxi Deng;Shuangshi Ma;Liyun Zeng
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.333-348
    • /
    • 2023
  • Fast infrastructure development boosts the demand for shotcrete. Despite sand and stone being the most common coarse and fine aggregates for shotcrete, excessive exploration of these materials challenges the ecological environment. This study utilized an industrial solid waste, high-titanium heavy slag, blended with steel fibers to form Wet Shotcrete of Steel Fiber-reinforced High-Titanium Heavy Slag (WSSFHTHS). It investigated its workability, shotcrete performance and mechanical properties under different water-to-cement ratios, fly ash content, superplasticizer dosage, and steel fiber content. The tunnel excavation and support were investigated by conducting finite element numerical simulation analysis and was used in 3 tunnel lining pipes in Zhonggouwan tailing pond. The major findings are as follows: (1) The water-to-cement ratio (w/c ratio) significantly impacted the compressive strength of WSSFHTHS. The highest 28-day compressive strength of 60 MPa was achieved when the w/c ratio was 0.38; (2) Adding fly ash improved the workability and shotcrete performance and strength development of WSSFHTHS. The best anti-permeability performance was achieved when the fly ash constituted 15%, with the lowest permeability coefficient of 4.596 × 10-11 cm/s; (3) The optimum superplasticizer dosage for WSSFHTHS is 0.8%. It provided the best workability and shotcrete performance. Excessive dosage resulted in water bleeding and poor aggregate encapsulation, while insufficient dosage decreased flowability and adversely affected shotcrete performance; (4) The dosage of steel fibers significantly impacted the flexural and tensile strength of WSSFHTHS. When the steel fiber dosage was 45 kg/m3, the 28-day flexural and tensile strengths were 8.95 MPa and 6.15 MPa, respectively; (5) By integrating existing shotcrete techniques, the optimal lining thickness was 80 mm for WSSFHTHS per simulation. The results revealed that after using WSSFHTHS, the displacement of the tunnel surrounding the rock significantly improved, with no cracks or hollows, similar to the simulation results.