• Title/Summary/Keyword: Coarse aggregate

Search Result 647, Processing Time 0.039 seconds

Physical and Mechanical Properties of Recycled Polymer Concrete (재생 폴리머 콘크리트의 물리.역학적 특성)

  • Baek, Seung-Chul;Kim, Young-Ik;Sung, Chan-Yong;Choi, Sang-Leung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.411-414
    • /
    • 2003
  • This study is performed to examine the physical and mechanical properties of recycled polymer concrete using recycled coarse aggregate and recycled fine aggregate. Tests for compressive strength, flexural strength and pulse velocity with replacement ratio of recycled coarse aggregate and recycled fine aggregate are performed. As a result, compressive strength, flexural strength and pulse velocity of polymer concrete containing recycled coarse aggregate are in the range of $826{\sim}849kgf/cm^2,\;192{\sim}200kgf/cm^2\;and\;3,932{\sim}4,000m/s$, respectively. Compressive strength, flexural strength and pulse velocity of polymer concrete containing crushed stone only are $805kgf/cm^2,\;197kgf/cm^2$ and 3,931 m/s, respectively. Accordingly, recycled aggregates is expected that can be utilizing as an aggregate of polymer concrete.

  • PDF

Concrete physical properties with substitution ratio of recycled Coarse aggregate and recycled fine aggregate (순환굵은골재와 순환잔골재 치환율에 따른 콘크리트의 물리적 특성에 관한 연구)

  • Yoon, Seung-Joe;Seo, Soo-Yeon;Lee, Woo-Jin;Kim, Dae-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.161-164
    • /
    • 2006
  • The main objective of this study was to evaluated the physical properties of concrete with substitution ratio of recycled fine aggregate and recycled coarse aggregate made of waste concrete. The replacement ratios of recycled coarse and fine aggregate decided 0%, 30%, 40% and 50% respectively to get the deregulate of floor space Index. The test result showed that compression strength of cylinder mold decrease with the substitution ratio increase but its strength of replaced recycled fine aggregate higher than OPC.

  • PDF

An Experimental Study on the Shear Behavior of Reinforced Concrete Beams using Recycled Coarse Aggregate (재생굵은골재를 사용한 철근콘크리트 보의 전단거동에 관한 실험연구)

  • 이명규;서정인
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.521-526
    • /
    • 2000
  • The structural behavior of the members using recycled coarse aggregate is investigated in this papers. The members considered this study are subjected to shear ad bending simultaneously. A series of test beam specimens using recycled coarse aggregate is made for the structural test. These specimens are manufactured using the concrete for the compressive strength of 280kg/$\textrm{cm}^2$ with recycled aggregate ratio of 0%, 20%, 40%, 60%, 80% of total aggregate volume, respectively. The main object of this test is to investigate the influence of the using recycled aggregate to the cracking strength of the member subjected to flexure and shear and the post cracking behavior.

  • PDF

An effect of Reclaimed Asphalt Concrete on the Strength Development of Concrete using Recycled-Aggregate (폐아스콘을 함유한 재생콘크리트의 강도발현 특성평가)

  • Lee Wook Jae;Seo Ki Won;Kim Hag Youn;Kim Nam Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.205-208
    • /
    • 2004
  • The purpose of this study is to recycle waste concrete and reuse reclaimed asphalt concrete as a concrete coarse aggregate. In this experiment, recycled coarse aggregate was substitute for natural crushed aggregate at the rate of 0, 30, $50\%$, and reclaimed asphalt concrete was substitute for recycled coarse aggregate at the rate of 0, 10, 20, $30\%$. According to the experimental results, as the reclaimed asphalt concrete content has influence on the properties of recycled aggregate concrete such as compressive and tensile strength, the criteria for the substitute ratio should be required to be set.

  • PDF

The Development of Model of the Modulus of Elasticity applied to Analysis of Concrete Structure using Nature Coarse Aggregate (강자갈을 사용한 콘크리트 구조물의 탄성계수 특성 모델)

  • Lee, Joon-Gu;Park, Kwang-Soo;Shin, Su-Gyun;Kim, Kwan-Ho;Kim, Han-Joung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.161-164
    • /
    • 2002
  • This study was performed to find out the regression function to calculate the modulus of elasticity of concrete mixed by river coarse aggregate. The distribution of the group of core strength made a normal curve and the effect factor in the modulus of elasticity was 0.97 at the concrete compounded by river coarse aggregate.

  • PDF

An Experimental Study on the Effect of Coarse Aggregate Shape Influencing to the Properties of Concrete (굵은 골재의 입형이 콘크리트의 특성에 미치는 영향에 관한 실험적 연구)

  • 송용찬;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.113-116
    • /
    • 1990
  • This study is designed to analyze the variation of grading and shape of aggregate with the number of rotations of Los-Angeles abrasion machine, and is aimed to analyze the effect of slump and compressive strength of strength of concrete with the shape of coarse aggregate by the abrasion act.

  • PDF

The Study on the Physical and Strength Properties of Lightweight Concrete by Replacement Ratio of Artificial Lightweight Aggregate (인공경량골재 혼합비율에 따른 경량 콘크리트의 물성 및 강도특성에 관한 연구)

  • Choi, Se-Jin;Kim, Do-Bin;Lee, Kyung-Su;Kim, Young-Uk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.313-322
    • /
    • 2019
  • This study is to compare and analyze the physical and strength properties of lightweight concrete using domestic lightweight aggregate by replacement ratio of artificial lightweight fine and coarse aggregate after considering low cement mixture and pre-wetting time. The slump, unit weight, compressive strength and split tensile strength of lightweight concrete with domestic lightweight aggregate were measured. As test results, the slump of lightweight concrete by replacement ratio of lightweight fine aggregate increased as the replacement ratio of lightweight fine aggregate increased. The unit weight of lightweight concrete using 100% of lightweight fine aggregate was about 10.4% lower than that of the lightweight concrete with natural sand. In addition, the unit weight of lightweight concrete by replacement ratio of lightweight coarse aggregate increased with the increase of the ratio of LWG10(5~10mm). The compressive strength of lightweight concrete with lightweight fine and coarse aggregate increased as the replacement ratio of lightweight fine aggregate increased. The compressive strength of lightweight concrete with natural sand and LWG10 was 30 to 31MPa regardless of the replacement ratio of the lightweight coarse aggregate after 7 days.

Properties of Self Compacting Concrete Using Ground Granulated Blast Furnace Slag (고로슬래그미분말을 사용한 고유동콘크리트의 특성)

  • 김은겸;박천세;전찬기;이호석;최재진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.579-584
    • /
    • 2002
  • In this research, the physical properties of self compacting concrete using ground granulated blast furnace slag as a part of cement were investigated. Concrete using ground granulated blast furnace slag was prepared with various ground granulated blast furnace slag replacement(20~80 volume %) for cement and the quantities of coarse aggregate in concrete were 50%, 55% and 60% of ratio of absolute volume of coarse aggregate. The workability, flowing characteristics, air content and compressive strength of concrete using ground granulated blast furnace slag were tested and the results were compared with those of ordinary portland cement concrete. In the experiment, we acquired satisfactory results at the point of flowing characteristics and strengths of concrete using ground granulated blast furnace slag within tile replacement ratio of 50% and the optimum quantity of coarse aggregate in concrete was found to be 50%~55% of ratio of absolute volume of coarse aggregate.

  • PDF

Engineering Properties of Permeable Polymer Concrete Using Bottom Ash and Recycled Coarse Aggregate

  • Sung, Chan-Yong;Kim, Jong-Hyouk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.25-31
    • /
    • 2006
  • Permeable polymer concretes can be applied to roads, sidewalks, river embankment, drain pipes, conduits, retaining walls, yards, parking lots, plazas, interlocking blocks, etc. This study was to explore a possibility of using bottom ash as filler and recycled coarse aggregate of industrial by-products for permeable polymer concrete. The tests carried out at $20{\pm}1^{\circ}C$ and $60{\pm}2%$ relative humidity. At 7 days of curing, unit weight, void ratio, compressive and flexural strength and coefficient of permeability ranged between $1,652{\sim}1,828kgf/m^{3},\;15{\sim}29+%,\;18.2{\sim}24.5\;MPa,\;6.4{\sim}8.4\;MPa\;and\;6.8{\times}10^{-2}{\sim}1.7{\times}10^{-1}\;cm/s$, respectively. It was concluded that the bottom ash and recycled coarse .aggregate can be used in the permeable polymer concrete.

An Experimental Study on the Properties of Concrete by Grain Shape of Coarse Aggregate (굵은골재의 입도에 따른 콘크리트의 특성에 관한 실험적 연구)

  • Bae, Bok-Keun;Jung, Jae-Sun;Kim, Hyung-Jin;Hong, Ki-Bo;Kim, Won-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.439-442
    • /
    • 2005
  • This study is to consider the influence strength of concrete according to the kinds of coarse aggregate. The experimental study conditions are varied with different maximum size of coarse aggregate(13mm, 19mm, 25mm) and the weight of water and S/a are constant. The compressive strength properties of the concrete at 7 days, 28 days are examined. According to the experimental results, the compressive strength increased and air content, slump decreased with maximum size of coarse aggregate increased.

  • PDF