• Title/Summary/Keyword: Coal particle size

Search Result 160, Processing Time 0.033 seconds

A Study on Visualization of Fine Dust Captured by FOG Droplet (미세액적에 의한 미세먼지 포집 가시화 연구)

  • Oh, Jinho;Kim, Hyun Dong;Lee, Jung-Eon;Yang, Jun Hwan;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.39-45
    • /
    • 2021
  • An experiment to visualize fine dust captured by FOG droplet is conducted. Coal dust with 23.56 MMD (Mean Median Diameter) and water with 17.02 MMD is used as fine dust and FOG droplet. Long distance microscope and high-speed camera are used to capture the images of micro-scale particles sprinkled by acrylic duct. After measuring and comparing the size of the coal dust and FOG droplet to MMD, process to seize the coal dust with FOG droplet is recorded in 2 conditions: Fixed and Floated coal dust in the floated FOG droplet flow. In both conditions, a coal dust particle is collided and captured by a FOG droplet particle. A FOG droplet particle attached at the surface of the coal dust particle does not break and remains spherical shape due to surface tension. Combined particles are rotated by momentum of the particle and fallen.

Characteristics of Coal Water Fuel by Various Drying Coals, Surfactants and Particle Size Distribution Using Low Rank Coal (건조된 저등급석탄과 첨가제 및 입자크기에 대한 석탄-물 혼합연료(CWF)의 특성)

  • Kim, Tae Joo;Kim, Sang Do;Lim, Jeong Hwan;Rhee, Young Woo;Lee, Si Hyun
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.464-468
    • /
    • 2013
  • In this study, in order to increase solid content of coal water fuel (CWF), various experimental parameters (i.e., coal type, additive, particle size distribution, drying method) were evaluated. To investigate the drying method, specimen is compared to using flash dry, fluidized bed dry and oil deposit stabilized coal. Difference of the solid content between low rank coal and high rank coal in this case indicate that high rank coal exhibits more higher than 20% of the solid cotent. And specimen for dispersibility was prepared by using dispersing agent of 4 types. As a result, using the dispersing agent was shown 5% higher in sold content than the case of not using the dispersing agent. Efficiency of CWF was improved by using fine coal of 80% in the particle size distribution of coal. Result of CWF using drying methods of 3 types, oil deposit stabilized (ODS) coal dried and stabilized was effective 12% higher in sold content than raw coal.

The treatment of coal fly ash for the recycling as ceramic raw materials : I. The effect of calcination and elutriation (요업원료로 재활용하기 위한 석탄회의 처리 : I. 하소 및 수비의 영향)

  • 김유택;이준호;정철원;허화범;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.414-422
    • /
    • 1995
  • Coal fly ash was calcined and elutriated for recycling as ceramic raw materials. C Crystal phases, morphologies, chemical components, particle size distributions and Ig. loss of as-received, calcined and elutriated coal fly ash were investigated to study the effects of the calci nation and elutriation on the coal fly ash classification. The experimental equations, which were used in elutriation of clay, were examined in order to find out which equation is appropriated for coal fly ash classification. It turned out that Rittinger's equation is relatively well matched for the fly ash. Having nothing to do with the treatment conditions, the crystal phases of coal f fly ash were mullite, quartz. Calcite peak was detected in as - received and elutriated coal fly a ash; however, it disappeared in calcined coal fly ash. As - received coal fly ash consists of various type of particles such as a cenosphere, coke type, silicate type, whisker type and aggregat e ed type. In case of calcined coal fly ash, coke type particles were eliminated and agglomerated type particles were relatively increased. Most of the particles that were relatively spherical cenosphere in the 4th step of elutriator. Particle size distribution was narrowed by calcination a and elutriation. Especially, in elutriation, particle size distribution was very narrow.

  • PDF

Effect of Ash Content on Unburned Carbon and NOx Emission in a Drop Tube Furnace (DTF 를 이용한 석탄 회분 함량에 따른 미연분 및 NOx 배출 특성 연구)

  • Kim, Sang-In;Lee, Byoung-Hwa;An, Ke-Ju;Kim, Man-Cheol;Kim, Seung-Mo;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.963-969
    • /
    • 2014
  • Four coal sources that had different ash contents were evaluated in a drop tube furnace (DTF). Combustion experiments were conducted by using several sources with different particle sizes and excess air ratios under air-staging conditions to determine the optimized combustion conditions of high-ash coal, with an emphasis on the combustion efficiency and NOx emissions. The results show that the higher ash content results in a large amount of carbon remaining unburned, and that this effect is dominant when the largest particle size is used. Furthermore, the ash content of coal does affect the Char-NOx concentration, which decreases with the particle size. The results of this study suggest that an air-staged system can be useful to reduce the NOx emissions of high-ash coal and that control of the air stoichiometric ratio of the primary combustion zone (SR1) is effective for reducing NOx emissions, especially by considering unburned carbon contents.

Vaned Wheel Atomization of CWM (Vaned Wheel Atomizer에 의한 CWM 미립화)

  • 김성준;김용선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.974-982
    • /
    • 1992
  • The atomizations of CWM slurry and water are done by a wheel atomizer which is designed and manufactured for this experiment. The variables of the experiment are the angle of vane, aspect ratio, particle loading and the mean size of coal particle distribution. The main purposes of the experiment are to know how the angle of vane and aspect ratio of vane influence the size distribution of CWM droplets. The experimental results say there are no appreciable effects on the mean size of CWM droplets from the change of loading of coal prticles in slurry. The mean size of coal particle in slurry, however, influence quite strongly the mean size of CWM droplets. The mean size of CWM droplets is quite strongly affected by the angle of vane. The size distribution of CWM droplets is controllable by the change of aspect ratio.

Microbial Desulfurization of Coal by Iron-Oxidizing Bacteria Thiobacillus ferrooxidans in packed beds (철산화 박테리아 Thiobacillus ferrooxidans를 이용한 충전탑 반응기에서의 석탄의 생물학적 탈황)

  • 류희욱
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.124-130
    • /
    • 1999
  • To evaluate the technical of microbial coal desulfurization during the storage in coal dumps, microbial pyrite oxidation in a packed column reactor with Thiobacillus ferrooxidans has been investigated. For microbial desulfurization in a packed reactor system, coal particle size over 1.0 mm with uniform size distribution seems to be most suitable as fas as drainage behavior and accessability of pyrite are concerned. When coal samples of 1∼2 and 2∼4 mm particle size were size were used, about 32∼42% of pyritic sulfur was removed within 70 days. The rate of pyritic sulfur oxidation was in the range of 348∼803 mg S/kg coal ·d, and the sulfur removal rates in packed columns were about 15∼25% of those in suspension cultures. Without any circulation of liquid medium, microbial coal desulfurization could be possible by the inoculation of T. ferrooxidans along on the coal dump. It was concluded that a microbial percolation process is one of possible processes for the desulfurization of high sulfur coal during a long-term storage.

  • PDF

Numerical study on heterogeneous behavior of fine particle growth

  • FAN, Fengxian;YANG, Linjun;Yuan, Zhulin;Yan, Jinpei;Jo, Young Min
    • Particle and aerosol research
    • /
    • v.5 no.4
    • /
    • pp.171-178
    • /
    • 2009
  • $PM_{2.5}$ is one of critical air pollutants due to its high absorbability of heavy metallic fumes, PAH and bacillary micro organisms. Such a fine particulate matter is often formed through various nucleation processes including condensation. This study attempts to find the nucleation behaviors of $PM_{2.5}$ arisen from coal power stations using a classical heterogeneous Fletcher's theory. The numerical simulation by C-language could approximate the nucleation process of $PM_{2.5}$ from water vapor, of which approach revealed the required energy for embryo formation and embryo size and nucleation rate. As a result of the calculation, it was found that wetting agents could affect the particle nucleation in vapor condensation. In particular, critical contact angle relates closely with the vapor saturation. Particle condensation could be reduced by lowering the angles. The wetting agents aid to decrease the contact angle and surface tensions, thereby may contribute to save the formation energy.

  • PDF

An Experimental Investigation of the Effect of Particle Size on the Combustion Characteristics of Pulverized Sub-Bituminous Coal with Low Calorific Value by Using an LFR System (LFR 장치를 이용한 입자 크기 변화에 따른 저열량 아역청 미분탄의 연소특성에 관한 실험적 연구)

  • Jeon, Chung-Hwan;Kim, Yong-Gyun;Kim, Jae-Dong;Kim, Gyu-Bo;Song, Ju-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.259-267
    • /
    • 2010
  • In this study, the effect of particle size on the combustion characteristics of pulverized sub-bituminous coal was experimentally investigated. A laminar-flow-entrained reactor was designed and implemented to realize the desired heating ratio and temperature corresponding to the combustion atmosphere of a pulverized-coal-fueled furnace. The flame length and structure of burning particles according to different sizes were investigated. Coal combustion processes were clearly distinguished by direct visual observation of the flame structure. The onset point of volatile ignition is greatly affected by changes in the particle size, and the burning time of the volatiles is least affected by changes in the particle size. The length and instability of char flame also increase with the increase of the particle size. However, the char consumption rate within the residential time remains nearly constant.

Simulation Study on the Effects of Heating Rate and Particle Size Distribution for the Formation of the Agglomerate During CWM Combustion (CWM 연료의 연소시 입자 가열속도와 입자 크기가 CWM 응집물 형성에 미치는 영향에 관한 전산모사 연구)

  • Kim, Soo-Ho;Kim, Young-Hwan;Hwang, Kap-Sung;Hong, Song-Sun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.364-371
    • /
    • 1998
  • A theoretical model of particle agglomeration was developed to investigate the adhesive force between contiguous coal particles in CWM agglomerate. While heating bituminous coal to about $400^{\circ}C$ or above, the transient occurrence of plastic behavior of coal particles can be observed. The adhesive force in the process of agglomeration of coal particles was found to be proportional to the duration of plasticity of the particles. In the research, how the heating rate and the particle size distribution of CWM fuel influenced the formation of the agglomerate in CWM fuel at the heat-up stage was investigated by the model of particle agglomeration. Simulation program used to this experiment was RKG method and was programmed by Fortran. It was represented that by the model of particle agglomeration, the adhesive force in the process of the particle agglomeration in CWM fuel was inversely proportional to the heating rate but proportional to particle size.

  • PDF

An Experimental Study on the Combustion Behavior of Single Coal-Water Slurry Droplet (석탄-물 혼합물 단일액적의 연소 특성에 관한 실험적 연구)

  • 채재우;조용철;전영남;한영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2159-2168
    • /
    • 1992
  • Coal-water slurry is considered to have the potential for displacing petroleum used in the existing oil-fired industrial and utility boilers. The combustion of coal-water slurry(CWS) is a complex process and little is known about the detailed mechanism. In this paper the combustion behavior of a single suspended droplet of CWS in hot gas stream was investigated. The effect of coal particle size, water content in droplet, initial droplet size, ambient temperature and oxygen fraction in ambient gas were studied. The results are as follows; (1) Increasing the oxygen fraction in ambient gas considerably reduced the char combustion time. (2) The variation of water content and coal particle size in droplet showed little effect on the combustion behavior. (3) In the relatively high temperature ambient gas, the water evaporation time became shorter and the combustion process was stable.