• Title/Summary/Keyword: Coal gasification

Search Result 297, Processing Time 0.03 seconds

Mineralogical and Drying Characteristics of Chinese Low Rank Coal for Coal Gasification (석탄가스화를 위한 중국산 저급 석탄의 광물학적 및 건조 특성)

  • Park, Chong-Lyuck;Kim, Byoung-Gon;Jeon, Ho-Seok;Kim, Sang-Bae;Park, Suk-Hwan;Lee, Jae-Ryeong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.199-209
    • /
    • 2010
  • Coal gasification technology in the sector of domestic clean coal technologies is being into the limelight since recent dramatic rise of international oil price. In this study, we used a low rank coal from Inner Mongolia, China as a starting material for gasification. Various properties including optical, mineralogical, X-ray spectroscopic, X-ray diffraction, and drying property were measured and tested in order to estimate the suitability of the coal to gasification. The coal was identified as a brown coal of lignite group from the measurement of vitrinite reflectance. The coal has very low slagging and fouling potentials, and the ignition temperature is about $250^{\circ}C$. The major impurities consist of quartz, siderite, and clay minerals. Additionally, the coal had moisture content above 28%. Tests for finding effective drying method showed that the microwave drying is more effective than thermal drying.

Characterization of CO2 Gasification of 17 Coals With Regard to Coal Rank (다양한 등급의 17종 석탄의 CO2 가스화 반응특성 연구)

  • Kim, Soohyun;Yoo, Jiho;Chun, Donghyuk;Lee, Sihyun;Rhee, Young Woo
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.333-341
    • /
    • 2013
  • This paper presents results on $CO_2$ gasification of 17 raw coals containing a wide range of volatile matter (21-57 wt%). The gasification is performed using a TGA under $CO_2$ and also under $N_2$ atmosphere. An amount of weight loss with increasing temperature is proportional to that of volatile matter in a coal under $N_2$ atmosphere. Reactivity of $CO_2$ gasification also increases with a content of volatile matter. However, the correlation is a little scattered. Oxygenated functional groups in a coal are generally reactive and therefore, an increase in O/C ratio leads to enhanced reactivity. However, $CO_2$ reactivity is affected by neither H/C ratio nor a content of ashes that possibly activate the gasification reaction. These findings are also applicable to steam coal gasification and the reactivity series are confirmed in the test at a fixed bed reactor.

Kinetic study on Low-rank Coal Including K2CO3, Na2CO3, CaCO3 and Dolomite Gasification under CO2 Atmosphere (이산화탄소 분위기에서 K2CO3, Na2CO3, CaCO3 및 Dolomite가 첨가된 저급탄의 가스화에 대한 반응특성연구)

  • Hwang, Soon Choel;Kim, Sang Kyum;Park, Ji Yun;Lee, Do Kyun;Lee, Si Hyun;Rhee, Young Woo
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.64-71
    • /
    • 2014
  • We have investigated the effects of various additives on Eco coal gasification under $CO_2$ atmosphere. The temperature ranges from $750{\sim}900^{\circ}C$ and the gasification experimental was carried out with Eco coal adding 7 wt% $K_2CO_3$, $Na_2CO_3$, $CaCO_3$, Dolomite, and non-additive under $N_2$ and $CO_2$ gas mixture. At $850^{\circ}C$, we observed that the reaction rate increased when the concentration of $CO_2$ increased. However, we also observed that the increment of reaction rate was small at more than 70% of the concentration of $CO_2$. The additives activity was ranked as 7 wt% $Na_2CO_3$ > 7 wt% $K_2CO_3$ > non-additive > 7 wt% Dolomite > 7 wt% $CaCO_3$ at $850^{\circ}C$. At the temperatures of $750^{\circ}C$, $800^{\circ}C$, $850^{\circ}C$, and $900^{\circ}C$, when the temperature increased, the gasification rate increased. The gasification was suitably described by the volumetric reaction model. Using volumetric reaction model, the activation energy of Eco coal including 7 wt% $Na_2CO_3$ gasification was 83 kJ/mol, which was the lowest value among all the alkaline additives.

Pressurized Drop Tube Furnace Tests of Global Gasification Characteristics of Coal (PDTF를 이용한 석탄가스화 특성 실험)

  • 신용승;최상민;안달홍
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.560-566
    • /
    • 1999
  • PDTF (Pressurized drop tube furnace) experiments using variations of temperature, oxygen/coal ratio, steam/coal and pressure with Roto coal (Sub A) were performed in order to investigate the effects of these experimental parameters on global gasification characteristics at elevated pressure. The results shows that the gasification at elevated pressure is more profitable than that at atmospheric pressure considering the carbon conversion and cold gas efficiency. The oxygen/coal ratio at which maximum cold gas efficiency was appeared ranged from 0.5 to 0.7 g/g. only when the temperature is sufficiently high enough, the raise of steam/coal ratio brings improvement of cold gas efficiency. As the pressure increased, the volume of carbon conversion by heterogeneous reaction increased but the volume of carbon conversion by pyrolysis decreased relatively.

  • PDF

Pressurized drop tube furnace tests of global gasification characteristics of coal (PDTF를 이용한 석탄가스화 특성 실험)

  • 신용승;최상민;안달홍
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.23-31
    • /
    • 1999
  • PDTF(Pressurized drop tube furnace) experiments using varied temperature, oxygen/coal ratio, steam/coal ratio and pressure with Roto coal(Sub A) were performed in order to investigate the effects of these experimental parameters on global gasification characteristics at elevated pressure. The results shows that the gasification at elevated pressure is more profitable than that at atmospheric pressure considering the carbon conversion and cold gas efficiency. The oxygen/coal ratio at which maximum cold gas efficiency was appeared ranged from 0.5 to 0.7g/g. Only when the temperature is sufficiently high enough, the raise of steam/coal ratio brings improvement of cold gas efficiency. As the pressure increased, the volume of carbon conversion by heterogeneous reaction increased but the volume of carbon conversion by pyrolysis decreased relatively.

  • PDF

CFD Modeling for 300MW Shell-Type One-Stage Entrained Flow Coal Gasifier : Effect of $O_2$/Steam/Coal Ratios, Coal Particle Sizes, and Inlet Angles on the Gasifier Performance (300MW급 Shell형 1단 분류층 석탄 가스화기의 전산수치해석 : 산소/스팀/석탄 주입비, 석탄입자 크기, 주입 노즐 각도가 가스화기 성능에 미치는 영향)

  • Song, Ji-Hoon;Kang, Min-Woong;Seo, Dong-Kyun;Lim, Sung-Jin;Paek, Min-Su;Hwang, Jung-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.227-240
    • /
    • 2010
  • Coal gasification is heading for a great future as one of the cleanest energy sources, which can produce not only electricity and heat, but also gaseous and liquid fuels from the synthesis. The work focuses on 300MW shell type one-stage entrained flow coal gasifier which is used in the Integrated coal Gasification Combined Cycle(IGCC) plant as a reactor. As constructing an IGCC plant is considerably complicated and expensive compared with a pulverized-coal power plant, it is important to determine optimum design factors and operating conditions using a computational fluid dynamics (CFD) model. In this study, the results of numerical calculations show that $O_2$/Coal ratio, 0.83, Steam/Coal ratio, 0.05, coal particle diameter, $100{\mu}m$, injection angle, $4^{\circ}$ (clockwise) are the most optimum in this research.

Applicability to Gas Engine and Small Sized Generator of Low Caloric Synthetic Gas Fuel from Coal Gasification (저발열량 석탄가스화연료의 가스엔진 및 소형발전기 적용연구)

  • Kim Tae-Kwon;Kim Sung-Roon;Jang Jun-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.3 s.32
    • /
    • pp.1-6
    • /
    • 2006
  • This paper presents the applicability of low caloric synthetic gas from coal gasification to a gas engine system and small sized generator. A commercial LPG engine is modified to use the low caloric synthetic gas from coal gasification as the gas engine fuel. The modification is focused on the fuel supplying system, which includes air flowrate adjusting orifice, gas mixer, vaporizer, preheater, regulators, and fuel tank. From the results of engine performance data, we have demonstrated that the engine modified by using the coal gasification gas is well operated from idle to wide open throttle conditions although the engine power is somewhat reduced relative to LPG fueled engine. And we have also demonstrated that the generator is well operated with various loads.

  • PDF

Kinetic Studies of CO2 Gasification by Non-isothermal Method on Fly Ash Char (비등온법에 의한 비산재 촤의 CO2 가스화 특성)

  • Kang, Suk-Hwan;Ryu, Jae-Hong;Lee, Jin-Wook;Yun, Yongseung;Kim, Gyoo Tae;Kim, Yongjeon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.493-499
    • /
    • 2013
  • For the purpose of utilizing fly ash from gasification of low rank coal, we performed the series of experiments such as pyrolysis and char-$CO_2$ gasification on fly ash by using the thermogravimetric analyzer (TGA) at non-isothermal heating conditions (10, 20 and $30^{\circ}C/min$). Pyrolysis rate has been analyzed by Kissinger method as a first order, the reliability of the model was lower because of the low content of volatile matter contained in the fly ash. The experimental results for the fly ash char-$CO_2$ gasification were analyzed by the shrinking core model, homogeneous model and random pore model and then were compared with them for the coal char-$CO_2$ gasification. The fly ash char (LG coal) with low-carbon has been successfully simulated by the homogeneous model as an activation energy of 200.8 kJ/mol. In particular, the fly ash char of KPU coal with high-carbon has been successfully described by the random pore model with the activation energy of 198.3 kJ/mol and was similar to the behavior for the $CO_2$ gasification of the coal char. As a result, the activation energy for the $CO_2$ gasification of two fly ash chars don't show a large difference, but we can confirm that the models for their $CO_2$ gasification depend on the amount of fixed carbon.

Design of a 20 Tons/Day Gasification Test Bed (20톤/일급 가스화공정 Test Bed 설계)

  • Chung, Jaehwa;Seo, Seokbin;Seo, Haikyung;Chi, Junhwa
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.112.1-112.1
    • /
    • 2010
  • To develop domestic IGCC gasification technology, a gasification test bed with a capacity of 20 tons/day has been designed. The main components of the test bed designed are a coal pulverizing and feeding facility, a gasifier, a syngas cooler, a gas treatment unit, oxygen and nitrogen tanks, and flare stack. For wide applications to the development of advanced coal gasification technology, many special functions have been given to it such as syngas recirculation, char recirculation, and multiple stage gasification. The test bed will be used for testing the characteristics of various types of coals, deriving optimum conditions for efficient gasifier operation and trouble shooting for the Korea IGCC demonstration plant. It will also be applied as a useful tool to develop scale-up design technology of IGCC and proceed to commercialization.

  • PDF

Comparative Evaluation of Steam Gasification Reactivity of Indonesian Low Rank Coals (인도네시아 저등급 석탄의 스팀 가스화 반응성 비교 평가)

  • KIM, SOOHYUN;VICTOR, PAUL;YOO, JIHO;LEE, SIHYUN;RHIM, YOUNGJOON;LIM, JEONGHWAN;KIM, SANGDO;CHUN, DONGHYUK;CHOI, HOKYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.693-701
    • /
    • 2016
  • Steam gasification of low rank coals is possible at relatively low temperature and low pressure, and thus shows higher efficiency compared to high rank coals. In this study, the gasification reactivity of four different Indonesian low rank coals (Samhwa, Eco, Roto, Kideco-L) was evaluated in $T=700-800^{\circ}C$. The low rank coals containing $53.8{\pm}3.4$ wt% volatile matter in proximate analysis and $71.6{\pm}1.2$ wt% carbon in ultimate analysis showed comparable gasification reactivity. In addition, $K_2CO_3$ catalyst rapidly accelerated the reaction rate at $700^{\circ}C$, and all of the coals were converted over 90% within 1 hour. The XRD analysis showed no significant difference in carbonization between the coals, and the FT-IR spectrum showed similar functional groups except for differences due to moisture and minerals. TGA results in pyrolysis ($N_2$) and $CO_2$ gasification atmosphere showed very similar behavior up to $800^{\circ}C$ regardless of the coal species, which is consistent with the steam gasification results. This confirms that the indirect evaluation of the reactivity can be made by the above instrumental analyses.