• Title/Summary/Keyword: Coal activated carbon

Search Result 91, Processing Time 0.025 seconds

Effect of PFO/Coal-tar Blending Ratio on Yield and Physical Properties of Pitch-based Activated Carbon (열분해유/콜타르 혼합비가 피치계 활성탄의 수율 및 물성에 미치는 영향)

  • Tae Ung Yoo;Sang Wan Seo;Ji Sun Im;Soo Hong Lee;Woo Jin Song;Seok Chang Kang
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.107-114
    • /
    • 2024
  • In order to produce high-yield pitch-based activated carbon, pitch was synthesized by blending pyrolysis fuel oil (PFO) and coal-tar. Pitch was synthesized by varying the amount of coal-tar from 0~20% compared to PFO and reacting at 380~420 ℃ for 3 h. The synthesized pitch had a softening point between 80 and 260 ℃, and yields ranged from 10 to 40%. At all synthesis temperatures, as the coal-tar blending ratio increased, the yield increased and the softening point decreased. After considering the selected pitches (softening points: 230~260 ℃), pitches containing coal-tar were more volatile at a low boiling point and had a higher residual carbon content. This is a difference in the composition of coal-tar and PFO, and it was con- firmed that coal-tar has a lot of aromatics and PFO has a lot of aliphatics. The selected pitch was heated to 950 ℃ in a tubular reactor and physically activated with steam for 1 hour. Activated carbon containing coal-tar showed higher yield and microporosity compared to only PFO. In this study, the effect of increasing activated carbon yield by blending pitch raw materials was confirmed, and the physical activation characteristics according to the coal-tar mixing ratio were examined.

Improving Water Quality and Bacterial Characteristics during Water Treatment Process Using Biological Activated Carbons on Downstream of the Nakdong River (낙동강 하류 상수원수의 생물활성탄에 의한 수질개선 및 세균분포 특성)

  • 박홍기;나영신;정종문;류동춘;이상준;홍용기
    • Journal of Environmental Science International
    • /
    • v.10 no.2
    • /
    • pp.105-111
    • /
    • 2001
  • Improvement of water quality and Investigation of bacterial characteristics have been conducted in a pilot plant using biological activated carbon (BAC) in water treatment process at the downstream of the Nakdong River. Most of water control parameters were highly improved after passing through BAC. Approximately 54% of dissolved organic carbon was removed in coal-based BAC process. Bacterial biomass and bacterial production appeared $9.8{\times}10^8 CFU/g and 7.1mg-C/m^3$.hr in coal-based BAC, respectively. Predominant bacteria species grown in BAC were identified as Pseudomonas, Flavobacterium, Alcaligenes, Acinetobacter and Aeromonas species. Particularly Pseudomonas vesicularis was dominant in both coal-based and coconut-based BACs, while Pseudomonas cepacia was dominant in wood-based BAC.

  • PDF

The Characteristics of Microbial Community for Biological Activated Carbon in Water Treatment Plant (생물활성탄 공정에서 활성탄 재질에 따른 부착미생물 군집특성)

  • Son, Hee-Jong;Park, Hong-Ki;Lee, Soo-Ae;Jung, Eun-Young;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1311-1320
    • /
    • 2005
  • The purpose of this research is to survey characteristics of microbial community and the removal efficiency of organic materials for biological activated carbon in water treatment plant. Coal based activated carbon retained more attached bacterial biomass on the surface of the activated carbon than the other activated carbon with operating time and materials. The heterotrophic plate count(HPC), eubacteria(EUB) and 4,6-diamidino-2-phenylindole(DAPI) counts were ranged from $0.95{\times}10^7$ to $52.4{\times}10^7$ CFU/g, from $3.8{\times}10^8$ to $134.2{\times}10^8$ cells/g and from $7.0{\times}10^8$ to $250.2{\times}10^8$ cells/g, respectively. The biomass of EUB and DAPI appeared to be much more $10^2$ than HPC, which were increasing in bed volume of 20,000 at the stage of steady-state. The change of microbial community by analyzing fluorescent in situ hybridization(FISH) method with rRNA-targeted oligonucleotide probes, the dominant group was $\alpha$-proteobacteria($\alpha$ group) and high G+C content bacteria(HGC) the lowest distributing rate before reaching the bed volume of 20,000. After reaching the bed volume of 20,000, $\alpha$ group and other groups of bacteria became decreased, on the other hand, the proportion of both $\beta$-proteobacteria($\beta$ group) and $\gamma$-proteobacteri($\gamma$ group) were increasing. Coconut and wood based activated carbons had similar trend with coal based activated carbon, but the rate of $\alpha$ group on coal based activated carbon had gradually increased. Bacterial production with the operating period appeared highest in coal based activated carbon at the range of $1.2{\sim}3.4\;mg-C/m^3{\cdot}h$ while the coconut and wood based activated carbon were ranged from 1.1 to 2.6 $mg-C/m^3{\cdot}h$ and from 0.7 to 3.5 $mg-C/m^3{\cdot}h$ respectively. The removal efficiency of assimilable organic carbon(AOC) showed to be highly correlated with bacterial production. The correlation coefficient between removal efficiency of AOC and bacterial production were 0.679 at wood based activated carbon, 0.291 at coconut based activated carbon and 0.762 at coal based activated carbon, respectively.

Adsorption Efficiency of Coal Based GACs and Evaluation of Economic Efficiency (석탄계 활성탄별 흡착능 및 경제성 평가)

  • Choi, Dong-Hoon;Son, Hee-Jong;Park, Jin-Sik;Moon, Choo-Yeun;Ryu, Dong-Choon;Jang, Seong-Ho;Kwon, Ki-Won;Kim, Han-Soo
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.205-213
    • /
    • 2013
  • This is made of domestic and foreign coal activated carbon of five species, physicochemical adsorption efficient about sterilize products and micro harmful substances and is a result of the economic evaluation. The most well-developed micropores bed volume 123,409 of AC-1 activate carbon appeared to be the best next AC-2, AC-3, AC-4, AC-5 followed by activated carbon was investigated. PFOA and PFOS in the BV 96,000 when evaluating foreign types of adsorption activated carbon adsorption capacity was greater when more than PFOA, PFOS showed that the adsorption well. The economic evaluation of activated carbon usage in chloroform (CUR) was most excellent as a AC-1 4.3 g/day, the next AC-2, AC-3, AC-4, AC-5 there are two types of foreign economic order appears to have appeared, but the current domestic market when applying the price AC-1, AC-3, AC-2, AC-4, AC-5 order was investigated.

Characteristics of Carbon Dioxide Adsorption with the Physical Property of Activated Carbon (활성탄의 물리적 특성에 따른 이산화탄소 흡착 특성)

  • Tanveer, Ahmad;Park, Jeongmin;Choi, Sinang;Lee, Sang-Sup
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.287-292
    • /
    • 2018
  • Effect of physical property of activated carbon on its carbon dioxide adsorption was investigated for the effective control of carbon dioxide. Pinewood sawdust and coal were used as raw materials of activated carbon. Specific surface area, micropore volume and mesopore volume of the prepared activated carbons were determined, respectively. The prepared activated carbons were analyzed for their adsorption capacity of carbon dioxide. The adsorption capacity was then presented with respect to the surface area, micropore volume and mesopore volume, respectively. As a result, the specific surface area and micropore volume of both pinewood and coal activated carbon were highly related to its carbon dioxide capacity. Its mesopore volume hardly affected its carbon dioxide capacity. Preparation of activated carbon with high specific surface area and micropore volume was found to be critical to the effective control of carbon dioxide.

Preparation of the activated carbon for the canister form cokes

  • In-Ki, Kim;Han-Jun, Oh;Jang, Jin-Seok;Youm, Hee-Nam;Young-Shin, Ko
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.67-71
    • /
    • 1997
  • Activated carbons are the microporous carbonaceous adsorbents which are prepared from carbon-containing source materials such as wood, coal, lignite, peteroleum and sometimes synthetic high polymers. [1-2] Activated carbons shows an ability to adsorbe hydrocarbons of the gas phase. Activated carbons are used in the purification of many kinds of gas phases like hexane, benzene, toluene, gasoline, phenol etc.[3] In this study, cokes from bitminous coal were activated for the purpose of preparing the activated carbons by steam activation. The effect of the activation temperature, time, steam concentration and flow rate on the n-butane adsorption, burn off, surface area and average pore size of the activated carbons, were investigated. The adsorption characteristics of the activated carbons for gasoline are indirectly estimated by n-butane adsorption.

  • PDF

A Study of the Distribution of a Bacterial Community in Biological-Activated Carbon (BAC) (생물활성탄 부착세균 분포 실태에 관한 연구)

  • Park, Hong-Ki;Jung, Eun-Young;Cha, Dong-Jin;Kim, Jung-A;Bean, Jae-Hoon
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1237-1242
    • /
    • 2012
  • The use of biological-activated carbon (BAC) processes in water treatment involves biofiltration, which maximizes the bacteria's capabilities to remove organic matter. In this study, the distribution of the bacterial community was assessed in response to different types of BAC processes applied downstream in the Nakdong River. The bacterial biomass and activity were $1.20{\sim}34.0{\times}10^7$ CFU/g and 0.61~1.10 mg-C/$m^3{\cdot}hr$ in coal-based BAC, respectively. The attachment of the bacterial biomass and the removal efficiency of the organic carbon were greatest with the coal-based activated carbon. The bacteria attached to each activated carbon material were detected in the order of Pseudomonas genus, Chryseomonas genus, Flavobacterium genus, Alcaligenes genus, Acinetobacter genus, and Spingomona genus. Pseudomonas cepacia was the dominant species in the coal-based materials, and Chryseomonas luteola was the dominant species in the wood-based material.

Structural Characterization and EDLC-Electrode Performance of Coal-Tar-Pitch Activated Carbon Using K2CO3 Treatment (K2CO3 처리된 Coal Tar Pitch 활성탄 전극의 결정성 및 EDLC 성능)

  • Choi, Poo Reum;Jung, Ji Chul;Lim, Yun-Soo;Kim, Myung-Soo
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.460-467
    • /
    • 2016
  • Activated carbons (ACs) have been used as EDLC (electric double-layer capacitor) electrode materials due to their high specific area, stability, and ecological advantages. In order to prepare ACs with high density and crystallinity, coal tar pitch (CTP) was activated by $K_2CO_3$ and the textural and electrochemical properties of the obtained ACs were investigated. Although the CTP ACs formed by $K_2CO_3$ activation had much smaller specific surface area and pore volume than did the CTP ACs formed by KOH activation, their volumetric specific capacitance (F/cc) levels as electrode materials for EDLC were comparable due to their higher density and micro-crystallinity. Structural characterization and EDLC-electrode performance were studied with different activation conditions of $CTP/K_2CO_3$ ratio, activation temperature, and activation period.

Preparation and Properties of Pelletized Activated Carbons Using Coconut Char and Coal-Tar Pitch

  • Yang, Seung-Chun;Lee, Young-Seak;Kim, Jun-Ho;Lim, Chul-Kyu;Park, Young-Tae
    • Carbon letters
    • /
    • v.2 no.3_4
    • /
    • pp.176-181
    • /
    • 2001
  • A series of activated carbons were prepared from coconut shells and coal-tar pitch binder by physical activation with steam in this study. The effect of variable processes such as activation temperature, activation time and ratio of mixing was investigated for optimizing those preparation parameters. The activation processes were carried out continuously. The nitrogen adsorption isotherms at 77 K on pellet-shaped activated carbons show the same trend of Type I by IUPAC classification. The average pore sizes were about 19-21${\AA}$. The specific surface areas ($S_{BET}$) of pellet typed ACs increased with increasing the activation temperature and time. Specific surface area of AC treated for 90 min at temperature $900^{\circ}C$ was 1082 $m^2/g$. The methylene blue numbers continuously increased with increasing the activation temperature and time. On the other hand, iodine numbers highly increased till activation time of 60 min, but the rate of increase of iodine numbers decreased after that time. This indicates that new micropores were created and the existing micropores turned into mesopores and macropores because of increased reactivity of carbon surface and $H_2O$.

  • PDF

Electrochemical Properties of EDLC Electrodes Prepared by Acid and Heat Treatment of Commercial Activated Carbons

  • Wu, Jin-Gyu;Hong, Ik-Pyo;Park, Sei-Min;Lee, Seong-Young;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.137-144
    • /
    • 2008
  • The commercial activated carbons are typically prepared by activation from coconut shell char or coal char containing lots of inorganic impurities. They also have pore structure and pore size distribution depending on nanostructure of precursor materials. In this study, two types of commercial activated carbons were applied for EDLC electrode by removing impurities with acid treatments, and controlling pore size distribution and contents of functional group with heat treatment. The effect of the surface functional groups on electrochemical performance of the activated carbon electrodes was investigated. The initial gravimetric and volumetric capacitance of coconut based activated carbon electrode which was acid treated by $HNO_3$ and then heat treated at $800^{\circ}C$ were 90 F/g and 42 F/cc respectively showing 94% of charge-discharge efficiency. Such a good electrochemical performance can be possibly applied to the medium capacitance of EDLC.