• Title/Summary/Keyword: Coal Char

Search Result 109, Processing Time 0.037 seconds

Reactivity of Coal Char Gasification with $CO_2$ at Elevated Pressure (가압하 석탄 촤의 $CO_2$ 가스화 반응성 연구)

  • 박호영;안달홍;김시문;김종진
    • Journal of Energy Engineering
    • /
    • v.12 no.3
    • /
    • pp.231-240
    • /
    • 2003
  • Reactivity of Char-CO$_2$ gasification of five coals for power generation was investigated with PTGA in the temperature range 850∼1000$^{\circ}C$ and the pressure range 0.5∼2.0 MPa. The effect of coal rank, initial char characteristics and pressure on the reaction rate was evaluated for five chars. The reactivity of low lank coal char was better than that of high rank coal char, and this could be explained with the initial pore structure and surface area of char. Meso/macro-pores of char seems to markedly affect char reactivity by way of providing channels for diffusion of reactant gas into the reactive surface area. For the range of tested pressure, the reaction rate is proportional to CO$_2$ partial pressure and the reaction order ranges from 0.4 to 0.7 for five chars. The effect of total pressure on the reaction rate was small, and kinetic parameters, based on the unreacted core model, were obtained for five chars.

Numerical Study of Biomass Char Applying FERPM (FERPM을 적용한 바이오매스 촤의 전산해석적 연구)

  • OH, HYUN-SUK;KIM, KANG-MIN;KIM, GYEONG-MIN;JEON, CHUNG-HWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.122-131
    • /
    • 2020
  • To reduce emissions from coal-fired power plants, researchers focusing on coal and biomass co-firing technology. Biomass, with its carbon-neutral nature and lower quantities of nitrogen and sulfur compared with coals, has a positive impact on coal-fired power generation. Many studies on the combustion of biomass have been conducted, but the study on the combustion characteristics of biomass char is limited. FERPM predicts char combustion characteristics with high accuracy by introducing experimental data-based parameters of biomass char and has not yet been applied in numerical simulation. In this study, FERPM is numerically applied to char combustion of wood pellets representing wood-based biomass and the combustion characteristics are compared with the kinetic/diffusion limited model, intrinsic model, and diffusion limited model.

A Study on Fuel NOx Emission Characteristics in Coal Combustion (석탄 연소시 연료 NOx 배출 특성에 관한 연구)

  • Kim, Sung Su;Choi, Hyun Jin;Lee, Hyun Dong;Kim, Jae-Kwan;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.675-680
    • /
    • 2009
  • This article describes NO emission characteristics in SM coal combustion. Combustion experiments was performed in the method of increasing temperature after feeding coal and feeding coal after increasing temperature. NOx emission is in inverse proportion to combustion temperature at the fuel rich condition and it was caused by conversion fuel N to $N_{2}$ at the strong reduction condition. In addition, feeding gas flow rate increased as total fuel NOx increase by conversion of fuel N to NO at the oxidation condition. It could be separated in total fuel-N, volatile-N, char-N to NO according to analysis of total fuel NO emission from char combustion at each temperature. In the result, almost total NOx emission was caused by volatile-N in SM-coal.

A Study on Char Oxidation Kinetics by Direct Measurement of Coal Ignition Temperature (석탄점화온도의 직접적인 측정에 의한 촤산화 반응율 도출에 대한 연구)

  • Kwon, Jong-Seo;Kim, Ryang-Gyoon;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.346-352
    • /
    • 2011
  • The experiment was designed to study the char oxidation kinetics of pulverized coals commonly utilized in Korean power plants. The kinetics has been estimated using the Semenov's thermal spontaneous ignition theory adapted to coal char particle ignition temperature. The ignition temperature of coal char particle is obtained by a direct measurement of the particle temperature with photo detector as well as by means of a solid thermocouple which is used as both a heating and a measuring element. The ignition temperatures for subbituminous coal, Wira, and bituminous coal, Yakutugol, have been measured for 4 sizes in the range of 0.52-1.09 mm. The ignition temperature of the particle increases with the increasing diameter. The results were used to calculate the activation energy and the pre-exponential factor. As a result, the kinetic parameters are in an agreement with ones reported from other investigations.

Reaction Rate Analysis of Combustion for Indonesian Coal Char Applied by External/Internal Diffusion (외부 및 내부 확산을 적용한 인도네시아 석탄촤의 연소 반응율 분석)

  • Hwang, Chan-Won;Kim, Ryang-Gyoon;Ryu, Kwang-Il;Wu, Ze-Lin;Jeon, Chung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.133-140
    • /
    • 2014
  • The experiment was designed to compare the char combustion kinetics of pulverized Indonesia coals commonly utilized in Korea power plants. The reaction rate of coal char has been formulated using the external and internal effectiveness factors to describe the diffusion effect quantitatively. The Random Pore Model (RPM) was used for applying internal specific surface area as a function of carbon conversion ratio. Reaction rate was obtained from reaction time using the Wire Heating Reactor (WHR) which can heat and measure the char particle temperature at the same time. BET and TGA were used to obtain physical properties such as internal specific surface area and structural parameter. Three kinds of Indonesia Sub-bituminous coals "BARAMULTI, ENERGYMAN, AGM" were used in order to derive the activation energy and pre-exponential factor. The results of this study showed that the effect of internal diffusion than that of external diffusion is the dominant as comparison of kinetics was reflected in external and internal effectiveness factors. For three kinds of coal char, finally, activation energy of intrinsic kinetics indicates 110~118 kJ/mol.

Influence of Coal Conversion Model and Turbulent Mixing Rate in Numerical Simulation of a Pulverized-coal-fired Boiler (미분탄 보일러 연소 해석에서 석탄 반응 모델 및 난류 혼합 속도의 영향 평가)

  • Yang, Joo-Hyang;Kim, Jung-Eun A.;Ryu, Changkook
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.3
    • /
    • pp.35-42
    • /
    • 2015
  • Investigating coal combustion in a large-scale boiler using computational fluid dynamics (CFD) requires a combination of flow and reaction models. These models include a number of rate constants which are often difficult to determine or validate for particular coals or furnaces. Nonetheless, CFD plays an important role in developing new combustion technologies and improving the operation. In this study, the model selection and rate constants for coal devolatilization, char conversion, and turbulent reaction were evaluated for a commercial wall-firing boiler. The influence of devolatilization and char reaction models was found not significant on the overall temperature distribution and heat transfer rate. However, the difference in the flame shapes near the burners were noticeable. Compared to the coal conversion models, the rate constant used for the eddy dissipation rate of gaseous reactions had a larger influence on the temperature and heat transfer rate. Based on the operation data, a value for the rate constant was recommended.

Gasification reactivity of Chinese Shinwha Coal Chars with Steam (스팀을 이용한 중국산 신화 석탄 촤 가스화 반응에 관한 연구)

  • Kang, Min-Woong;Seo, Dong-Kyun;Kim, Yong-Tak;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.22-29
    • /
    • 2010
  • In this study, carbon conversion was measured using an electronic mass balance. In a lab scale furnace, each coal sample was pyrolyzed in a nitrogen environment and became coal char, which was then gasified with steam under isothermal conditions. The reactivity of coal char was investigated at various temperatures and steam concentrations. The VRM(volume reaction model), SCM(shrinking core model), and RPM(random pore model) were used to interpret experimental data. For each model the activation energy(Ea), pre-exponential factor (A), and reaction order(n) of the coal char-steam reaction were determined by applying the Arrhenius equation into the data obtained with thermo-gravimetric analysis(TGA). According to this study, it was found that experimental data agreed better with the VRM and SCM for 1,000 and $1,100^{\circ}C$, and the RPM for 1,200 and $1,300^{\circ}C$. The reactivity of chars increased with the increase of gasification temperature. The structure parameter(${\psi}$) of the surface area for the RPM was obtained.

Evaluation of the empirical and structural coal combustion models in the IFRF no.1 Furnace (미분탄 탈휘발 및 촤반응 모델 평가)

  • Joung, Daero;Han, Karam;Huh, Kang Y.;Park, Hoyoung
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.217-219
    • /
    • 2012
  • This study describes 3D RANS simulation of a 2.1 MW swirling pulverized coal flame in a semi-industrial scale furnace. The simulation of pulverized coal combustion involves various models for complex physical processes and needs information of pyrolysis rate, the yields and compositions of volatiles and char especially in coal conversion. The coal conversion information can be acquired by the experiment or the pre-processor code. The empirical model based on the experiment of the IFRF and the structural model based on the pre-processor code of the PC-COAL-LAB were evaluated against the measurement data.

  • PDF

An Experimental Study on the Characteristics of Oxygen Combustion of Pulverized Coal and the $NO_x$ Formation using TGA/DSC and DTF (TGA/DSC, DTF를 이용한 미분탄의 산소 연소 및 $NO_x$ 배출 특성에 관한 실험적 연구)

  • Lee, Dae-Keun;Seo, Dong-Myung;Noh, Dong-Soon;Ko, Chang-Bog
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.54-59
    • /
    • 2007
  • In a view of capturing $CO_2$ as a greenhouse gas, an experimental study was conducted on the combustion characteristics of pulverized coal in $O_2$/$CO_2$ environment using TGA/DSC and DTF facilities. The effects of gas composition and concentration on the processes of devolatilization and char burning experienced by coal particles in combustion furnace and on the concentration of products such as $CO_2$, CO and $NO_x$ were observed using TGA/DSC and DTF respectively. As results, it were found that the rate of devolitilation is nearly independent on the $O_2$ concentration if it is over 20% but the char burning rate is a sensitive function of $O_2$ percent, and the two rates can be controlled by $O_2$ concentration in order to be similar with those of air combustion case. It was also found that high concentration $CO_2$ can be captured by oxy-coal combustion and high concentration of CO and low value of $NO_x$ are exhausted in that case. Additionally, NO reducing reaction by CO with char as catalyst was observed and a meaningful results were obtained.

  • PDF