• 제목/요약/키워드: Coagulation and sedimentation

검색결과 115건 처리시간 0.028초

생활하수내 인 제거를 위한 화학적 침전의 최적화 (Optimization of chemical precipitation for phosphate removal from domestic wastewater)

  • 이선경;박문식;연승재;박동희
    • 상하수도학회지
    • /
    • 제30권6호
    • /
    • pp.663-671
    • /
    • 2016
  • Coagulation/precipitation process has been widely used for the removal of phosphate within domestic wastewater. Although Fe and Al are typical coagulants used for phosphate removal, these have some shortages such as color problem and low sedimentation velocity. In this study, both Fe and Al were used to overcome the shortages caused by using single one, and anionic polymer coagulant was additionally used to enhance sedimentation velocity of the precipitate formed. Batch experiments using a jar test were conducted with real wastewater, which was an effluent of the second sedimentation tank in domestic wastewater treatment plant. Response Surface Methodology was used to examine the responsibility of each parameter on phosphate removal as well as to optimize the dosage of the three coagulants. Economic analysis was also done on the basis of selling prices of the coagulants in the field. Phosphate removal efficiency of Fe(III) was 30% higher than those of Fe(II). Considering chemical price, optimum dosage for achieving residual phosphate concentration below 0.2 mg/L were determined to be 18.14 mg/L of Fe(III), 2.60 mg/L of Al, and 1.64 mg/L of polymer coagulant.

전응집 및 Fenton 산화공정을 이용한 축산폐수의 난분해성물질 제거특성에 관한 연구 (Degradation Characteristics of Non-biodegradable Matters using Pre-Coagulation and Fenton Oxidation Process in Livestock Wastewater)

  • 조창우;김병용;채수천;김선애;정팔진
    • 한국물환경학회지
    • /
    • 제22권1호
    • /
    • pp.66-73
    • /
    • 2006
  • The purpose of this study was done to evaluate degradation characteristics of non-biodegradable organic matters including aromatic compounds in livestock wastewater using CFZ process. The CFZ process is consisted of coagulation/sedimentation, Fenton oxidation and zeolite adsoption process. degradation charateristics of each treatment water including livestock wastewater were analyzed by UV scanning, FT-IR and GC/MS. After coagulation/sedimentation process as 1st treatment, non-biodegradable matters remained after 1st treatment were removed by using OH radical produced in Fenton oxidation process. As a result of treatment using these processes, NBDCOD removal efficiency was over 90%. Increase of $E_2/E_3$ ratio (absorbance at 250 and 365 nm) in each treatment water means that aromaticity of livestock wastewater decreased. In case of GC/MS, most aromatics or polynuclear aromatics like benzene, phenol and scatol in livestock wastewater almost wasn't detected after oxidation using OH radical.

합류식 하수관거 지역에서 강우시 하수처리장 적정운영방안에 관한 연구 (Alternatives for The Stable Operation of Wastewater Treatment Plant in Combined Sewer System during Wet Weather)

  • 이두진;신응배;홍철의;안세영
    • 한국물환경학회지
    • /
    • 제20권2호
    • /
    • pp.132-144
    • /
    • 2004
  • The purpose of this study was to evaluate alternatives for stable operation of WWTP(Wastewater Treatment Plant) with a higher rate of inflows and a higher concentration of pollutants during wet weather to minimize the pollution loads being discharged into receiving waters. 3Q(Q: dry weather flow) of a base flow is normally intercepted and flows into WWTP as it was current practice. It is revealed by simulation that the bypassing alternative of 1Q through secondary treatment and 2Q into the stream after primary treatment was as good as it is expected. The bypass pollution loads were in the range of 23.9 ~ 38.5 % of the total loads flowing into the WWTP indicating that the bypassed flows need an extra treatment such as stormwater detention reservoir, high-rate coagulation with sedimentation, and step-feed. The high-rate coagulation with sedimentation was the most effective with respect to removal of the pollution loads.

세라믹 막여과의 성능향상을 위한 응집 전처리의 적용 (Application of coagulation pretreatment for enhancing the performance of ceramic membrane filtration)

  • 강준석;송지영;박서경;정아영;이정준;서인석;채선하;김성수;김한승
    • 상하수도학회지
    • /
    • 제31권6호
    • /
    • pp.501-510
    • /
    • 2017
  • In this study, it is estimated that ceramic membrane process which can operate stably in harsh conditions replacing existing organic membrane connected with coagulation, sedimentation etc.. Jar-test was conducted by using artificial raw water containing kaolin and humic acid. It was observed that coagulant (A-PAC, 10.6%) 4mg/l is the optimal dose. As a results of evaluation of membrane single filtration process (A), coagulation-membrane filtration process (B) and coagulation-sedimentation-membrane filtration process (C), TMP variation is stable regardless of in Flux $2m^3/m^2{\cdot}day$. But in Flux $5m^3/m^2{\cdot}day$, it show change of 1-89.3 kpa by process. TMP of process (B) and (C) is increased 11.8, 0.6 kpa each. But, the (A) showed the greatest change of TMP. When evaluate (A) and (C) in Flux $10m^3/m^2{\cdot}day$, TMP of (A) stopped operation being exceeded 120 kpa in 20 minutes. On the other hand, TMP of (C) is increased only 3 kpa in 120 minutes. Through this, membrane filtration process can be operated stably by using the linkage between the pretreatment process and the ceramic membrane filtration process. Turbidity of treated water remained under 0.1 NTU regardless of flux condition and DOC and $UV_{254}$ showed a removal rate of 65-85%, 95% more each at process connected with pretreatment. Physical cleaning was carried out using water and air of 500kpa to show the recovery of pollutants formed on membrane surface by filtration. In (A) process, TMP has increased rapidly and decreased the recovery by physical cleaning as the flux rises. This means that contamination on membrane surface is irreversible fouling difficult to recover by using physical cleaning. Process (B) and (C) are observed high recovery rate of 60% more in high flux and especially recovery rate of process (B) is the highest at 95.8%. This can be judged that the coagulation flocs in the raw water formed cake layer with irreversible fouling and are favorable to physical cleaning. As a result of estimation, observe that ceramic membrane filtration connected with pretreatment improves efficiency of filtration and recovery rate of physical cleaning. And ceramic membrane which is possible to operate in the higher flux than organic membrane can be reduce the area of water purification facilities and secure a stable quantity of water by connecting the ceramic membrane with pretreatment process.

The Condition of Optimum Coagulation for Recycling Water from CMP Slurry

  • Seongho Hong;Oh, Suck-Hwan
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.415-420
    • /
    • 2001
  • Water usage in the semiconductor industries is dramatically increased by not only using bigger wafer from 8 inches to 12 inches but also by adapting new process such as Chemical Mechanical Planarization (CMP) process invented by IBM in late '80. However, The document published by International Semiconductor Association suggests the decreasing ultra pure water (UPW) use from 22 gallon/in$^2$in 1997 to 5 gallon/in$^2$ in 2012. The criteria will possibly used as exporting obstacle in the future. Generally, Solid content of CMP slurry is about 15wt%. The slurry is diluted with UPW before fed to a CMP process. When the slurry is discharged from the process as waste, it contains 0.1~0.6wt% of solid content and 9~10 at pH. The CMP waste slurry is discharged to stream with minimum treatment. In this study, to find optimum condition of coagulation for water recovery from the waste CMP slurry various condition of coagulation were examined. After coagulation far 0.1 wt% solid content of waste CMP slurry, the sludge volume was 10~15% after 30 min of sedimentation time. For the 0.5 wt%, sludge volume was 50~55% after one hour of sedimentation time. For more than 80% of water recycling, the solid content should be in the range of 0.1 to 0.2wr%. Based on the result of the turbidity removal, the Zeta Potential and the analysis of heavy metals, the optimum condition for 0.1 wr% of waste CMP slurry was with 20 mg/L of PACI at 4 to 5 of pH. The result showed that the optimum conditions fer the 0.1 wt% waste CMP slurry were 100mg/L of Alum at 4~5 of pH, 100 mg/L of MgCI$_2$at pH 10 to 11 and 100 mg/L of Ca(OH)$_2$at pH 9 to 11, respectively.

  • PDF

고분자성 Al(III) 응집제의 특성이 상수원수의 응집특성에 미치는 영향 (Effects of Characterization of Polymeric Al(III) Coagulants on Coagulation of Surface Water)

  • 이선기;한승우;강임석
    • 상하수도학회지
    • /
    • 제12권2호
    • /
    • pp.99-105
    • /
    • 1998
  • This research explored the feasibility of preparing and utilizing a preformed polymeric solution of Al(III) for coagulation in water treatment. Slow base(NaOH) injection into supersaturated aluminum chloride solutions did produce high yields of the type of Al polymers useful to water treatment applications. PACl's characteristic analysis showed that the quantity of polymeric Al produced at value of $r(OH_{added}/Al)=2.2$ was 83% of the total aluminum in solution, as showing maximum contents and precipitate was dramatically increased when r was increased above 2.35. And PACl was stable during sitoring period so aging effect was negligible. Results of the coagulation of Nakdong river waters with three PACls showed that the effectiveness of the three coagulants can be considered as r = 2.2 > r = 2.0 > r = 2.35 which are also the order of higher polymeric aluminum contents. Coagulation results for synthetic water exhibited optimum dose of 0.25mM Al, for three PACls, but above optimum dose, r = 2.0 and 2.2 PACl impaired the coagulation and sedimentation of turbidity and humic acid because of the restabilization of particulate. The effect of pH for on coagulation of Nak Dong River water showed that it had much effect turbidity and TOC removal, especially near pH 7. But pH effect was little for turbidity and TOC removal when r = 2.35 PACl was used for coagulation, that PACl had much more precipitates content.

  • PDF

고탁도시 DAF 정수장의 운영 및 진단 (Operation and Diagnosis of DAF Water Treatment Plant at Highly Turbid Raw Water)

  • 권순범;안효원;강준구;손병용
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.191-200
    • /
    • 2004
  • DAF process has been designed considering raw water quality characteristics in Korea. Although direct filtration is usually operated, DAF is operated when the freshwater blooms occut or raw water turbidity become high. Pre-sedimentation iS prepared in case when raw water turbidity is very high by rainstorms. A main feature of this plant is that the operation mode can be changed (controlled) based on the characteristics of raw water to optimize the effluent quality and the operation costs. Treatment capacity (surface loading rate) and efficiency of DAF was found to be better than conventional sedimentation process. Moreover, low-density particles (algae and alum flocs) are easily separated while it is difficult to remove in sedimentation. One of the main concerns in adoption of DAF (Dissolved Air-Flotation) process is a high raw water turbidity problem. That is, DAF is not adequate for raw water, which is more turbid than 100NTU. In order to avoid this problem, pre-sedimentation basins are prepared in DAF plant to decrease the turbidity of DAF influent. For simulation of the actual operation, bench and full-scale tests were performed for highly turbid water conditions. Consequently, DAF process coupled with sedimentation is suggested that pre-sedimentation with optimum coagulation prior to DAF would be appropriate.

벤토나이트를 이용한 양돈 폐수의 고액분리 (Solid-liquid Separation of Swine Wastewater using Bentonite)

  • 임제현;강선홍
    • 상하수도학회지
    • /
    • 제18권6호
    • /
    • pp.742-747
    • /
    • 2004
  • Solid-liquid separation of swine wastewater was conducted using bentonite as coagulant. During the separation experiment, coagulation efficiency was also investigated. To determine optimal bentonite dose, 0.1, 0.2, 0.4, 0.8, and 1.6% (w/v basis) of bentonite was dosed. Suspended solid removal efficiency was 87-98% at whole bentonite dosage. But sediment volume was increased, and settling velocity was decreased at excessive bentonite dosage. Therefore optimal bentonite dosage was evaluated around 0.2-0.4%. In the test to determine optimal pH, coagulation using bentonite was performed at pH 3, 4, 5, 6, and 7. At lower pH suspended solid removal efficiency was increased. However, sediment volume was also increased and phosphorus release was observed. Thereby optimal pH for bentonite coagulation might be appeared in the range of 6-7.

상수원수 전처리 시 효율향상을 위한 생물여과 반응기 위치선정 (Evaluation of Biological Aerated Filter Position on Water Treatment Processes for Water Quality Improvement)

  • 최형주;최동호;배우근
    • 대한환경공학회지
    • /
    • 제28권6호
    • /
    • pp.677-686
    • /
    • 2006
  • 본 연구의 목적은 기존 정수처리 공정에 하향류식 호기성 생물여과 공정을 설치하였을 때 적정 위치를 선정하고자, 응집/침전 전(Mode A)에 BAF 공정을 설치하였을 때와 응집/침전 후(Mode B)에 BAF 공정을 설치하였을 때의 부유성 입자물질, 유기물, 암모니아성 질소 제거효율을 비교하고자 하였다. 운전결과 입자성물질(turbidity, SS)의 제거효율은 모든 EBCT에 걸쳐 Mode A, B 모두 약 80% 정도의 효율을 보였으며 Mode A에서의 효율이 다소 높은 것으로 조사되었다. 유기물질($BOD_5$) 제거 및 질산화 효율도 90% 이상으로 나타났으며 Mode A에서 의 효율이 더 좋은 것으로 나타났다. 생물막 두께 및 양은 EBCT가 증가할수록 커졌으며, 기질이 유입되는 상부에서 하부에 비해 약 30% 이상 미생물량이 많았다. 비산소소비속도(SOUR)는 기질이 유입되는 반응기 상부, Mode A에서 증가하는 경향을 나타내었으며 약품주입량 비교 시 Mode A가 경제적인 것으로 나타났다. 기존상수처리공정과 Mode A에 대한 경제성 분석결과 연간 응집제를 67%, 염소주입량을 95% 가량 절감할 것으로 조사되었다.

응집.침전공정에서 무기고분자응집제를 이용한 미세조류의 제거 (Removal of Microalgae Using Inorganic Coagulants in Coagulation and Sedimentation Processes for Water Treatment)

  • 정정조
    • 대한환경공학회지
    • /
    • 제30권1호
    • /
    • pp.85-89
    • /
    • 2008
  • 정수 처리공정의 응집 침전공정에서 무기고분자응집제를 이용한 미세조류의 제거 가능성을 파악하기 위해서 응집제의 종류(Alum, PAC)와 응집영향인자(알칼리도, 응집제 주입량, 침전시간)에 따른 미세조류의 제거율과 미세조류의 크기(micro-, nano-, picoplankton)별 제거율과 주입된 응집제가 미세조류의 제거에 미치는 기여율을 평가하였다. 알칼리도의 주입량에 따른 조류의 제거율은 Alum의 경우 알칼리도가 25 mg/L의 조건에서 87.2%, PAC의 경우 알칼리도가 30 mg/L의 조건에서 90.1%로 가장 높은 제거율을 나타내었다. 조류의 제거율이 가장 높은 응집제 주입량은 Alum의 경우 40 mg/L로 제거율이 88.1%이었고, PAC의 경우는 주입량이 50 mg/L에서 제거율이 89.0%로 가장 높은 제거율을 나타내었다. 그리고 조류의 제거에는 PAC보다는 Alum이 다소 유리하다는 것을 알 수 있었다. 응집제가 주입되었을 경우 주입되지 않은 조건에 비해서 조류의 제거율이 약 2배 정도 증가하는 것을 알 수 있었다. 최적조건 하에서 조류의 제거율은 nanoplankton > microplankton > picoplankton의 순으로 나타났으며, 특히 picoplankton의 제거율은 약 30% 미만으로 제거율이 매우 낮은 것을 알 수 있었다.