• 제목/요약/키워드: Coagulant dose

검색결과 72건 처리시간 0.022초

Studies on the anti-coagulant component of Loranthus yadoriki

  • Lee, Sun-Kyung;Song, Hee-Sun;Yoo, Eun-A;Yang, Hyun-Ok
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.71-71
    • /
    • 2003
  • Methanol extract of Loranthus yadoriki showed the prolongation effect of bleeding time in vivo using mice in dose dependent manner. From the MeOH extract of Loranthus yadoriki, compound-A was isolated by the activity guided isolation method using silicagel column chromatography. The anti-coagulant activity was evaluated by the bleeding time test in vivo and plasma recalcification time test in vitro. Compound A showed moderate anti -coagulant activity on plasma recalcification time in vitro.

  • PDF

해수담수화 전처리 공정으로써 잔류 알루미늄 농도를 고려한 응집-UF 공정 연구 (Evaluation of Coagulation-UF Process Considering Residual Aluminuim Concentration as Seawater Desalination Pretreatment)

  • 손동민;강임석
    • 대한환경공학회지
    • /
    • 제35권7호
    • /
    • pp.495-502
    • /
    • 2013
  • 본 연구는 UF공정의 전처리로써 Al(III)계 응집제인 alum과 PACl을 사용한 응집공정 적용 시 두 응집제의 효율 비교 및 잔류 알루미늄 농도를 고려한 최적 운전 조건을 알아보기 위해 응집제 주입농도, 완속교반의 적용 그리고 해수 원수의 pH를 변화하여 UF막 flux 및 잔류 알루미늄 이온 농도를 조사했다. 그 결과 pH 8.0 조건에서 alum의 주입농도가 증가할수록 flux 또한 증가하였으며 완속교반은 UF막 flux를 오히려 감소시킨 것으로 조사된 반면 PACl의 경우 주입농도가 증가할수록 flux는 일부 감소하는 경향을 보였으며 alum과는 반대로 완속교반 적용시 flux 또한 증가하였다. 반면에 pH 6.5 조건에서 alum 주입량이 0.7 mg/L (as Al)일 때 UF막 flux의 효율이 가장 좋았고 잔류 알루미늄 농도는 0.05 mg/L (as Al) 이하로 측정되었다. PACl의 경우 UF막 flux 측면에서는 최적 조건은 pH 8.0, 주입농도 1.2 mg/L (as Al) 그리고 완속교반 시간을 적용하였을 때였으며 잔류 알루미늄 농도를 고려한 최적 주입조건은 pH 6.5 조건에서 주입농도를 1.2 mg/L (as Al)일 때로 조사되었다.

부패조와 호기성 여과공정을 이용한 영양염류 제거 (Removal of Nutrients Using an Upflow Septic Tank(UST) - Aerobic Filter(AF) System)

  • 박상민;전항배;배종훈;박우균;박노백
    • 한국환경농학회지
    • /
    • 제29권3호
    • /
    • pp.232-238
    • /
    • 2010
  • 본 연구에서는 UST-AF 시스템에 전(前)응집 후(後)생물학적 처리 공정을 도입하여 질소와 인을 동시에 제거하고자 하였다. 연속공정은 유기물 및 SS의 제거 효율이 90%이상으로 균등화 효과와 질산화 효율이 높았다. 호기성 여과조에서 질산화 효율이 95% 이상이었으며, 반송을 통한 탈질화 효율은 80% 이상이었다. 하수원수에 화학적 처리 공정을 도입하여 총인을 90% 이상 제거하였으며, 후속공정의 생물반응에 영향을 주지 않은 alum 주입량은 40 mg/L이었다. 그러나 하수원수에 포함된 응집제에 의한 생물반응의 저해는 관찰되지 않았으나, 향후 장기간 운전하였을 경우 공정내 축적된 응집 슬러지의 영향에 대한 고찰이 필요할 것으로 예상된다.

응집제에 따른 합성섬유 여재를 충진한 고속필터의 여과특성에 관한 연구 (An investigation into the performance of a high-speed synthetic fiber filter employing different types of coagulants)

  • 박기수;김영철
    • 상하수도학회지
    • /
    • 제31권2호
    • /
    • pp.125-139
    • /
    • 2017
  • In this paper, the performance of a synthetic fiber filter aimed at high-speed operation and dosed with different coagulants or filter aids was investigated. Without a coagulant, the filter efficiency was about 62% which was greatly enhanced when three types of coagulants namely PAC, Alum, and $FeCl_3$ were used. Among the coagulants tested, PAC was the most effective, giving 91% filter efficiency, followed by Alum with 90%, and $FeCl_3$ with 78%. PAC worked effectively at a very small range of dose, but Alum was relatively effective in a wide range of concentration. Compared with PAC and Alum, $FeCl_3$ provided more or less contant efficiency regardless of its dose but gave the poorest filter efficiency. Moreover, as the inflow turbidity increased, headloss increased and the efficiency decreased at any dose and type of coagulant. The headloss recorded in this particular synthetic fiber filter is not significant as compared to that observed in typical granular filters. The recovery of solids estimated after filter cleaning was about 80% for both PAC and Alum, but poorer at 72% in the case of $FeCl_3$ due to the heavy and large floc characteristics. The recurrence of filter efficiency verified through repetitive filter runs was found to be satisfactory.

응집제주입에 의한 급속모래여과에서 초기유출수의 수질향상 (Improving the Initial Effluent Water Quality of Rapid Sand Filter by Coagulants Injection)

  • 김우항;전지훈
    • 한국환경과학회지
    • /
    • 제15권3호
    • /
    • pp.237-242
    • /
    • 2006
  • The purpose of this research was to investigate the efficiency of coagulants dose after backwashing. The turbidity of initial effluent was high after backwashing in the rapid sand filtration and the high turbidity was almost removed by coagulants dose into filter-sand after backwashing. It was found that the turbidity of initial effluent was well removed by all kinds of the coagulants used in this study. When filtration was performed input water with differentiated pH's, the turbidity of effluent was low at the range of pH 5 - pH 7. But the removal was not good about over pH 9. This result was considered into the existence forms of aluminium, $Al(OH)^{2+}\;and\;{Al(OH)_2}^+$ at pH 5. Cryptosporidiums of effluent were 4/ml for ten minutes immediately after back washing and 3/ml until sixty minutes. However, the case of coagulant dose after backwashing, Cryptosporidiums of effluent were 0.5/ml for ten minutes with no detection after twenty minutes.

정수장 유입조류 전처리를 위한 천연조류제거제(W.H.)의 최적주입농도 결정 (Decision Algorithm of Natural Algae Coagulant Dose to Control Algae from the Influent of Water Works)

  • 장여주;정진홍;임현만;윤영한;안광호;장향연;김원재
    • 대한환경공학회지
    • /
    • 제38권9호
    • /
    • pp.482-496
    • /
    • 2016
  • 하천과 호수의 부영양화로 인하여 남조류가 대량으로 증식하게 되면 고유의 생물독소로 인한 위해뿐만 아니라 정수처리 과정에서 경제적 손실을 야기할 가능성이 있다. 현재 상용화되어있는 천연조류제거제인 M사의 W.H. 응집제(이하 W.H.)는 참나무 유래 성분의 살조 및 타감작용을 이용한 응집.부상공정을 통하여 조류를 사전에 제거함으로써 정수공정에 미치는 영향을 효과적으로 저감할 수 있다. 그러나, W.H.를 활용한 응집 부상공정은 정수처리의 전처리공정으로 적용된 사례가 없기 때문에 최적주입농도의 결정기법에 대한 보고 또한 전무한 실정이다. 본 연구에서는 (1) 한강에서 채취한 복합 조류와 (2) 남조류를 선택적으로 대량 배양하여 광조건 하에서 W.H. 투여량 및 조류농도 등의 여러 조건을 변화시키면서 Jar-test를 시행하여 응집 부상공정에서의 조류의 제거기작을 검토하였다. Jar-test 결과를 바탕으로 IBM-SPSS를 활용한 다중회귀분석을 실시하여 최적 W.H. 주입농도를 결정하기 위한 Chl-a 농도와 탁도를 변수로 하는 두 가지 선형식을 도출하였다. 또한 유입수질의 변동에 따라 W.H. 주입농도를 신속하게 결정하고 자동화할 수 있는 자동제어 로직의 프로토타입(Prototype)을 제시하였다.

하수 2차처리 방류수의 총인 고효율 처리를 위한 응집·막분리 혼성처리 (Coagulation-membrane separation hybrid treatment of secondary treated effluent for high efficiency phosphorus removal)

  • 최욱진;이병하;박준홍;차호영;이병찬;송경근
    • 상하수도학회지
    • /
    • 제32권1호
    • /
    • pp.47-53
    • /
    • 2018
  • This study investigated phosphorus removal from secondary treated effluent using coagulation-membrane separation hybrid treatment to satisfy strict regulation in wastewater treatment. The membrane separation process was used to remove suspended phosphorus particles after coagulation/settlement. Membrane separation with $0.2{\mu}m$ pore size of micro filtration membrane could reduce phosphorus concentration to 0.02 mg P/L after coagulation with 1 mg Al/L dose of polyaluminum chloride (PACl). Regardless of coagulant, the residual concentration of phosphorus decreased as the dose increased from 1.5 to 3.5 mg Al/L, while the target concentration of 0.05 mg P/L or less was achieved at 2.5 mg Al/L for the aluminum sulfate (Alum) and 3.5 mg Al/L for PACl. Moreover, alum showed better membrane flux as make bigger particles than PACl. Alum showed a 40% of flux decrease at 2.5 mg Al/L dose, while PACl indicated a 50% decrease of membrane flux even with a higher dose of 3.5 mg Al/L. Thus, alum was more effective coagulant than PACl considering phosphorus removal and membrane flux as well as its dose. Consequently, the coagulation-membrane separation hybrid treatment could be mitigate regulation on phosphorus removal as unsettleable phosphorus particles were effectively removed by membrane after coagulation.

On-line 모니터링 기법을 이용한 Al염계와 Fe염계 응집제의 응집특성 평가 (Evaluation of Coagulation Characteristics of Fe(III) and Al(III) Coagulant using On-line Monitoring Technique)

  • 손희종;염훈식;김상구;서창동;황영도
    • 한국환경과학회지
    • /
    • 제23권4호
    • /
    • pp.715-722
    • /
    • 2014
  • Effects of coagulation types on flocculation were investigated by using a photometric dispersion analyzer (PDA) as an on-line monitoring technique in this study. Nakdong River water were used and alum and ferric chloride were used as coagulants. The aim of this study is to compare the coagulation characteristics of alum and ferric chloride by a photometric dispersion analyzer (PDA). Floc growing rates ($R_v$) in three different water temperatures ($4^{\circ}C$, $16^{\circ}C$ and $30^{\circ}C$) and coagulants doses (0.15 mM, 0.20 mM and 0.25 mM as Al, Fe) were measured. The floc growing rate ($R_v$) by alum was 1.8~2.8 times higher than that of ferric chloride during rapid mixing period, however, for 0.15 mM~0.25 mM coagulant doses the floc growing rate ($R_v$) by ferric chloride was 1.1~2.3 times higher than that of alum in the slow mixing period at $16^{\circ}C$ water temperature. Reasonable coagulant doses of alum and ferric chloride for turbidity removal were 0.1 mM (as Al) and 0.2 mM (as Fe), respectively, and the removal efficiency of those coagulant doses showed 94% for alum and 97% for ferric chloride. The appropriate coagulant dose of alum and ferric chloride for removing dissolved organic carbon (DOC) showed about 0.3 mM (as Al, Fe) and at this dosage, DOC removal efficiencies were 36% and 44%, and ferric chloride was superior to the alum for removal of the DOC in water.

급속교반조건에서 Alum 응집제의 가수분해종 분포특성과 유기물특성변화 (Characterization of Natural Organic matter by Rapid Mixing Condition)

  • 송유경;정철우;손희종;손인식
    • 상하수도학회지
    • /
    • 제20권4호
    • /
    • pp.559-571
    • /
    • 2006
  • The overall objective of this research was to find out the interrelation of coagulant and organic matter during rapid mixing process and to identify the change of organic matter by mixing condition and to evaluate the effect of coagulation pH. During the coagulation, substantial changes in dissolved organics must be occurred by coagulation due to the simultaneous formation of microflocs and NOM precipitates. Increase in the organic removal efficiency should be mainly caused by the removal of microflocs formed during coagulant injection. That is, during the mixing period, substantial amount of dissolved organics were transformed into microflocs due to the simultaneous formation of microflocs and NOM precipitates. The results also showed that 40 to 80% of dissolved organic matter was converted into particulate material after rapid mixing process of coagulation. During the rapid mixing period, for purewater, formation of dissolved Al(III) (monomer and polymer) constant by rapid mixing condition, but for raw water, the species of Al hydrolysis showed different result. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. At A/D(Adsorption and Destabilization) and sweep condition, both $Al(OH)_3(s)$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

칼슘과 마그네슘염을 이용한 염색폐수의 응집처리 (Treatment of Dyeing Wastewater by Flocculation with Calsium and Magnesium salts)

  • 김재용;서완주
    • 환경위생공학
    • /
    • 제17권3호
    • /
    • pp.89-98
    • /
    • 2002
  • The changes of conventional clarification process and an increase in treatment cost are required to meet increasingly stringent regulations related to the treated water quality. Although many enhanced coagulations have introduced to improve organic matter removal, the results to remove color, nitrogen and phosphorus as well as organic material have not been very efficient yet. The removal of waste matters such as SS, organic matter, color and turbidity contained in dyeing wastewater was carried out by using the combination of calcium hydroxide and magnesium sulfate. The flocculation was investigated as a function of coagulant dose, pH, mixing time, settling time and coagulant addition modes such as the sequential addition of the two coagulants and the simultaneous addition of them. The flocculation by the combination of calcium hydroxide and magnesium sulfate was compared with that by aluminum sulfate. The mechanism of flocculation was investigated as well. About 84% of color in dyeing watewater was removed by flocculation with combination of calcium hydroxide and magnesium sulfate.