• Title/Summary/Keyword: CoW alloy

Search Result 152, Processing Time 0.041 seconds

Effect of B and W Contents on Hardness of Electroless Co Alloy Thin Films (B와 W의 함량이 무전해 Co 합금 박막의 경도에 미치는 영향 연구)

  • Lim, Taeho;Kim, Jae Jeong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.895-900
    • /
    • 2018
  • In this study, the electroless deposition of Co-B and Co-W-B alloy thin films was developed and the effect of B and W contents on the hardness of the alloy thin films were investigated. An amorphous Co alloy film was successfully formed by electroless deposition and the contents of B and W in the film were controlled by varying the concentrations of dimethylamine borane and sodium tungstate dihydrate, which were used as a reducing agent and W source, respectively. The hardness of the thin films increased as the contents of B and W were increased because B and W act as impurities suppressing the propagation of dislocation in a film. In addition, it was found that the content of B and W in the Co alloy films can be increased significantly when aeration is not performed. Finally, the hardness of Co-W-B alloy thin film was improved up to 8.9 (${\pm}0.3$) GPa.

Effects of W Contents in Co Matrix of the Thermal Sprayed WC-Co on the Corrosion Behavior in Molten Zinc

  • Seong, Byeong-Geun;Hwang, Sun-Young;Kim, Kyoo-Young;Lee, Kee-Ahn
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.147-153
    • /
    • 2007
  • This study sought to investigate the reaction of Co-binder containing tungsten with molten zinc. Four kinds of Co-W alloys (pure, 10%W, 20%W, 30%W) were prepared using the powder metallurgy method. The specimens were immersion-tested in molten pure zinc baths at $460^{\circ}C$. To evaluate the corrosion property in molten zinc, the weight loss of the specimen was measured after the immersion tests at different immersion times (10~300 min.). Co-10%W alloys, compared with pure cobalt, showed no effect of tungsten addition on the reaction rate in molten zinc. The relationship between the weight loss and the square root of immersion period represents a straight line in both pure cobalt and Co-10%W alloy. The Co-Zn reaction layer in Co- 1O%W alloy consists of $\gamma2$, $\gamma1$, $\gamma$ and ($\beta1$ phases. The rate of weight loss significantly increases and the weight loss behavior is not well accord with the linear relationship as the tungsten content in the Co-W alloy increases. The $\beta1$ layer was not formed on the Co-20%W alloy and neither was a stable Co-Zn intermetallic compound layer found on the Co-30%W alloy. The main cause of increase in reaction rate with increasing tungsten content is related with the instability of the Co-Zn reaction phases as seen on micro-structural analysis.

Study on the HDDR Characteristics of the Nd-Fe(-Co)-B(-Ga-Zr)-type Alloys

  • Shon, S.W.;Kwon, H.W.;Kang, D.I.;Kim, Yoon.B.;Jeung, W.Y.
    • Journal of Magnetics
    • /
    • v.4 no.4
    • /
    • pp.131-135
    • /
    • 1999
  • The HDDR characteristics of the Nd-Fe-B-type isotropic and anisotropic HDDR alloys were investigated using three types of alloys: alloy A $(Nd_{12.6}Fe_{81.4}B_6), alloy B (Nd_{12.6}Fe_{81.3}B_6Zr_{0.1}), and alloy C (Nd_{12.6}Fe_{68.8}Co_{11.5}B_6Ga_{1.0}Zr_{0.1}$). The alloy A is featured with the isotropic HDDR character, while alloy B and C are featured with the anisotropic HDDR character. Hydrogenation and disproportionation characteristics of the alloys were examined using DTA under hydrogen gas. Recombination characteristics of the alloys were examined by observing the coercivity variation as a function of recombination time. The present study revealed that the alloy C exhibits slightly higher hydrogenation and disproportionation temperatures compared to the alloy A and B. Recombination of the anisotropic alloy B and C takes place more rapidly with respect to the isotropic alloy A. The intrinsic coercivities of the recombined materials rapidly increased with increasing the recombination time and then showed a peak, after which the coercivities decreased gradually. The degraded coercivity was, however, recovered significantly on prolonged recombination treatment. Compared with the isotropic HDDR alloy A the anisotropic HDDR alloy B and C are notable for their greater recovery of coercivity. The significant recovery of coercivity was accounted for the in terms of the development of well-defined smooth grain boundary between the recombined grains on prolonged recombination.

  • PDF

Magnetic and magneto-optical properties of two metallic phase magnet Co/Co$_2$TiSn films

  • Kim, T. W.;Lee, J. W.;S. C. Shin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.375-377
    • /
    • 1998
  • The magneto-optical properties of Co/Co$_2$TiSn two-phase magnet films were studied. These films show that relatively large Kerr rotations which are -0.4 deg. at the wavelength of 400 nm, compared to that of pure Co. It is conceivable that the magneto-optical effects may be due to both contributions of ferromagnetic Co matrix and ferromagnetic Co$_2$TiSn Heusler alloy precipitate. The perpendicular magnetization curve domonstrates a typical bubble domain hysteresis loop. the saturation magnetization change of the annealed film is less sensitive to temperature in the low temperature region and the Curie temperature of Co$_2$TiSn Heusler alloy precipitate is a little higher in the annealed film. These can be explained by the increase of the number of Co-Co exchange interaction in Heusler alloy structure resulting from the change of chemical ordering by annealing.

  • PDF

The Formation of Pt-Co Alloy Thin Films for RTD Temperature Sensors with Wide Temperature Ranges (광대역 측온저항체 온도센서용 Pt-CO 합금박막의 형성)

  • 김서연;노상수;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.335-338
    • /
    • 1997
  • Platinum-Cobalt alloy thin films were deposited on A1$_2$O$_3$substrate by magnetron cosputtering for RTD temperature sensors with wide temperature ranges. We made Pt-Co alloy resistance patterns on the A1$_2$O$_3$substrate by lift-off method and fabricated Pt-Co alley RTD temperature sensors by using Pt-wire, Pt-paste. We investigated the physical and electrical characteristics of theme films under various conditions, input power, working vacuum, annealing temperature and time, and also after annealing these films. The resistivity and sheet resistivity of these films were decreased with increasing the annealing temperature. At input power of Pt : 4.4 W/cm$^2$, Co : 6.91 W/cm$^2$, working vacuum of 10 mTorr and annealing conditions of 800$^{\circ}C$ and 60 min, the resistivity and sheet resistivity of Pt-Co thin films was 15${\mu}$$\Omega$$.$cm and 0.5$\Omega$/ , respectively, and the TCR value of Pt-Co alloy thin films with thickness of 3000${\AA}$ was 3740ppm/$^{\circ}C$ in the temperature range of 25∼600$^{\circ}C$. These results indicate that Pt-Co alloy thin films hove potentiality for the RTD with wide temperature ranges.

  • PDF

Assessment of Tribological Characteristics of CoCrW and CoCrMo Alloys (CoCrW와 CoCrMo 합금의 트라이볼로지 특성 평가)

  • Kwon, Dong-Gyun;Oh, Se-Jin;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.38 no.4
    • /
    • pp.162-169
    • /
    • 2022
  • Cobalt-chromium (CoCr)-based alloys have been used for wear applications because of their excellent mechanical properties and wear resistance. With growing concern over environmental problems, CoCr alloys are expected to be used for various tribological applications in degraded lubrication states. To expand the applicability of the materials, data should be accumulated across a broad spectrum of experimental parameters. In this work, the friction and wear characteristics of cobalt-chromium-tungsten (CoCrW) and cobalt-chromium-molybdenum (CoCrMo) alloys are investigated experimentally. The tests are conducted using a pin-on-reciprocating-plate tribotester in dry lubrication. CoCrW and CoCrMo are used as pin and plate materials to investigate the effect of the counter material. The results show that the friction coefficients between CoCrW and CoCrMo generally range from 0.4 to 0.5. The friction coefficient between the CoCrW pin and plate is found to be slightly small. However, the total wear between the CoCrW pin and plate is found to be the largest. In contrast, the total wear between the CoCrW pin and plate is relatively small. Furthermore, CoCrW may cause a faster wear progression of CoCrMo, especially for the case in which CoCrMo is used as the pin material. The results of this work provide a better understanding of the tribological properties of CoCrW and CoCrMo alloys. In addition, this work provides a practical guideline for the use of CoCrW and CoCrMo from the tribological design viewpoint.

A Study on the Abrasive Wear Properties of the PTA Overlay Layers using the Super Alloy Powder (초내열합금분말에 의한 PTA 오버레이부의 연삭 마모 특성 연구)

  • Kim, Young-Sik;Choi, Young-Gook;Lim, Chang-Hoon;Kim, Jong-Do
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.80-84
    • /
    • 2009
  • The Plasma Transferred Arc (PTA) overlay welding method is lately introduced as one of the most useful surface overlay method of the engine component. In this paper, the overlay welding on the SNCrW heat resisting alloy was conducted by the PTA overlay welding process using the super alloy powder. The characteristics of the overlay layers were investigated through the metallurgical and abrasive test. Experimental results showed that the overlay on the SNCrW heat resisting alloy surface was successfully made without hot cracking. The friction wear characteristics of the Co-base Stellite 6 overlayer were most superior. However the abrasive wear characteristics were most inferior in the Co-base Stellite 6 overlayer.

Annealing Characteristics of Pt-Co Alloy thin Films for RTD Temperature Sensors (RTD용 Pt-Co 합금박막의 열처리 특성)

  • Hong, Seog-Woo;Seo, Jeong-Hwan;No, Sang-Soo;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1349-1351
    • /
    • 1998
  • Platinum-Cobalt alloy thin films were deposited on $Al_2O_3$ substrates by r.f. cosputtering for RTD temperature sensors. We made Pt-Co alloy resistance patterns on the $Al_2O_3$ substrates by lift-off method and investigated the physical and electrical characteristics of these films under various conditions (the input power, working vacuum, annealing temperature, thickness of thin films) and also after annealing these films. At input power of Pt : $4.4 W/cm^2$. Co:6.91W/$cm^2$. working vacuum of 10 mTorr and annealing conditions of $1000^{\circ}C$ and 60 min, the resistivity and sheet resistivity of Pt-Co thin films was $15{\mu}{\Omega}{\cdot}cm$ and $0.5{\Omega}/{\square}$, respectively. The TCR value of Pt-Co alloy thin films was measured with various thickness of thin films and annealing conditions. The optimum TCR value is gained under conditions $3000{\AA}$ of thin films thickness and $1000^{\circ}C$ of annealing temperature. These results indicate that Pt-Co alloy thin films have potentiality for the high resolution RTD temperature sensors.

  • PDF

Electrochemical Behavior and Biocompatibility of Co-Cr Dental Alloys

  • Kang, Jung-In;Yoon, Jun-Bin;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.107-107
    • /
    • 2015
  • In order to investigate electrochemical behavior and biocompatibility of Co-Cr dental alloy by electrochemical corrosion test and MTT assay, the xCo-25Cr-yW-zNi alloys were used in this study. Samples of Co-Cr-W-Ni alloys were manufactured using arc melting furnace. The microstructure of the alloys was examined by optical microscopy (OM), Field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), MTT assay, and corrosion test. Corrosion resistance increased slightly as cobalt (Co) content increased. And bioactivity was concerned with nickel (Ni) and tungsten (W). Biocompatibility of Co-Cr alloy depended on Ni and W contents.

  • PDF

Structural and Magnetic Properties of Co2MnSi Heusler Alloy Films

  • Lim, W.C.;Okamura S.;Tezuka N.;Inomata K.;Bae, J.Y.;Kim, H.J.;Kim, T.W.;Lee, T.D.
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.8-11
    • /
    • 2006
  • Recently half-metallic full-Heusler alloy films have attracted significant interests for spintronics devices. As these alloys have been known to have a high spin polarization, very large TMR ratio is expected in magnetic tunnel junctions. Among these alloys, $Co_2MnSi$ full-Heusler alloy with a high spin polarization and a high Curie temperature is considered a good candidate as an electrode material for spintronic devices. In this study, the magnetic and structural properties of $Co_2MnSi$ Heusler alloy films were investigated. TMR characteristics of magnetic tunnel junctions with a $Co_2MnSi/SiO_2/CoFe$ structure were studied. A maximum MR ratio of 39% with $SiO_2$ substrates and 27% with MgO(100) substrates were obtained. The lower MR ratio than expectation is considered due to off-stoichiometry and atomic disorder of $Co_2MnSi$ electrode together with oxidation of the electrode layer.