• Title/Summary/Keyword: CoNbZr alloy

Search Result 15, Processing Time 0.018 seconds

Microstructure and Corrosion Behavior of Zr Alloys with Manufacturing Process (핵연료피복관용 Zr 합금의 제조공정에 따른 미세조직 및 부식거동)

  • Kim, H.G.;Choi, B.K.;Kim, K.T.;Kim, S.D.;Park, C.H.;Jeong, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.5
    • /
    • pp.288-296
    • /
    • 2005
  • The corrosion behaviors of Zr-based alloys were very sensitive to their microstructures which were determined by manufacturing process. The specimens of Zr-based alloy named as HANA-4 for nuclear fuel cladding were investigated in order to get the optimized manufacturing process such as the intermediate annealing temperature and cold working steps after the ${\beta}$ quenching. From the microstructural analysis, cold worked microstructure of the samples was changed to the recrystallized microstructure by performed process. The corrosion behaviors of HANA-4 alloy were affected by the different manufacturing process. The ${\beta}$-Zr phase was formed in the matrix and the Nb concentration in the ${\beta}$-Zr phase was increased as progressing the manufacturing process. So, it was found that the corrosion rate of HANA-4 alloy was affected by the Nb concentration in the matrix.

Fabrication and Mechanical Properties of Ni-based Amorphous Bulk Alloys (Ni기 비정질 벌크합금의 제조와 기계적 성질)

  • Kim, Sung-Gyoo
    • Journal of Korea Foundry Society
    • /
    • v.22 no.6
    • /
    • pp.288-292
    • /
    • 2002
  • Ni-base amorphous alloys were manufactured using melt-spinning and Cu-mold die casting methods. Amorphous formability, the supercooled liquid region before crystallization and mechanical properties were examined. The reduced glass transition temperature and the supercooled liquid region of $Ni_{51} Nb_{20} Zr_9 Ti_9 Co_8 Cu_3$alloy were 0.621 and 46 K respectively. $Ni_{51} Nb_{20} Zr_9 Ti_9 Co_8 Cu_3$ alloy was produced in the rod shape 3mm diameter using the Cu-mold die casting. Hardness, compression strength, elongation and elastic modulus of the alloy were 850 DPN, 2.75 GPa, 1.8% and 150 GPa respectively. Moreover, compression strength of 2.75 GPa was the highest value in the amorphous bulk alloy produced up to now.

Thermal stability, magnetic and magnetocaloric properties of Gd55Co35M10 (M = Si, Zr and Nb) melt-spun ribbons

  • Jiao, D.L.;Zhong, X.C.;Zhang, H.;Qiu, W.Q.;Liu, Z.W.;Ramanujan, R.V.
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1523-1527
    • /
    • 2018
  • The thermal stability, magnetic and magnetocaloric properties of $Gd_{55}Co_{35}M_{10}$ (M = Si, Zr and Nb) melts-pun ribbons were studied. The relatively high reduced glass transition temperature ($T_{x1}/T_m$ > 0.60) and low melting point ($T_m$) resulted in excellent glass forming ability (GFA). The Curie temperatures ($T_C$) of melt-spun amorphous ribbons $Gd_{55}Co_{35}M_{10}$ for M = Si, Zr and Nb were 166, 148 and 173 K, respectively. For a magnetic field change of 2 T, the values of maximum magnetic entropy change $(-{\Delta}S_M)^{max}$ for $Gd_{55}Co_{35}Si_{10}$, $Gd_{55}Co_{35}Zr_{10}$ and $Gd_{55}Co_{35}Nb_{10}$ were found to be 2.86, 4.28 and $4.05J\;kg^{-1}K^{-1}$, while the refrigeration capacity (RC) values were 154, 274 and $174J\;kg^{-1}$, respectively. The $RC_{FWHM}$ values of amorphous alloys $Gd_{55}Co_{35}M_{10}$ (M = Si, Zr and Nb) are comparable to or larger than that of $LaFe_{11.6}Si_{1.4}$ crystalline alloy. Large values of $(-{\Delta}S_M)^{max}$ and RC along with good thermal stability make $Gd_{55}Co_{35}M_{10}$ (M = Si, Zr and Nb) amorphous alloys be potential materials for magnetic cooling operating in a wide temperature range from 150 to 175 K, e.g., as part of a gas liquefaction process.

Effects of Deposition and Annealing Conditions on Structural and Magnetic Properties of CoNbZr Alloy Films (제조 조건 및 열처리 조건에 따르는 CoNbZr 합금 박막의 구조 및 자기적 성질에 관한 연구)

  • 양준석;이성래
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.2
    • /
    • pp.54-61
    • /
    • 2000
  • The structural and magnetic properties of sputtered CoNbZr alloy films were investigated. In the as-deposited $Co_{87.0}$N $b_{8.5}$Z $r_{4.5}$ film deposited at 2 mTorr and 130 W, we observed the minimum coercivity of 1.75 Oe, the maximum resistivity of 3000 $\mu$Ω.cm and permeability of 1095 at 100 MHz. As the Ar pressure or the RF input power increased, the permeability of films at 100 MHz decreased and the coercivity increased because of the development of columnar structure and the formation of unstable amorphous phase. Permeability lower than 100 and coercivity of 60 Oe were observed in film deposited at 1 mTorr or 190 W due to the formation of crystalline phase. Magnetic anisotropy field of as-deposited films could be reduced by rotating field annealing for 120 minutes at 30$0^{\circ}C$. After the annealing, the anisotropy field (Hk) decreased from 1.43 Oe to 0.3 Oe and the permeability increased from 1095 to 1345 because defects in as-deposited films were eliminated by the annealing.aling.

  • PDF

Effects of Melting and Rolling Condition of Ti-10wt.%Ta-10wt.%Nb Alloy on Microstructure Variation (용해 및 가공조건 변화가 Ti-10wt.%Ta-10wt.%Nb합금의 미세조직에 미치는 영향)

  • Lee, Doh-Jae;Lee, Kwang-Min;Kim, Min-Ki;Lee, Kyung-Ku
    • Journal of Korea Foundry Society
    • /
    • v.22 no.3
    • /
    • pp.114-120
    • /
    • 2002
  • A new titanium based alloy, Ti-10Ta-10Nb, has designed to examine the improved mechanical properties and biocompatibility. A specimen of titanium alloy was melted in a consumable vacuum arc furnace and homogenized at $1050^{\circ}C$ for 24 h. The effect of hot rolling on microstructure was estimated after rolling at $400^{\circ}C$ and $800^{\circ}C$ respectively. Surface of melted alloy by consumable vacuum arc melting was consisted of rough surface and it was changed to sound surface by coating of $ZrO_2$ slurry on copper mold surface. The hardness of Ti-10Ta-10Nb alloy increased with the amount of${\alpha}+{\beta}$ phase. Ti-10Ta-10Nb alloy showed $Widmanst{\"{a}}ten$ structure by hot rolling at $800^{\circ}C$ and in the rolling ${\beta}-region$ was negligible effects on microstructure refining.

Hydrogen Embrittlement and Surface Properties of Pd-coated Zr-based Amorphous Alloys (Pd 코팅된 Zr기 비정질 합금의 수소취성 및 표면특성)

  • Seok, Song;Lee, Dock-Young;Kim, Ki-Bae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.182-188
    • /
    • 2007
  • [ $Zr_{50}-Ni_{27}-Nb_{18}-Co_5$ ] amorphous alloys ribbon was prepared by a single-roller melt-spinning technique. In order to improve the hydrogen kinetics Pd-coating were carried out on each side of the amorphous ribbon. Pd prevents oxidation of Zr and catalyses the dissociation of molecular hydrogen to atomic hydrogen. In this work, the hydrogen embrittlement and surface properties on Zr-based amorphous alloys were investigated. The Zr-based amorphous alloys were characterized by X-ray diffractometry(XRD) and differential scanning calorimetry(DSC). The morphology of surface and roughness was observed by using scanning electron microscopy(SEM) and atomic force microscopy (AFM). A lattice parameter of both Pd and Zr-based amorphous alloy was increased after hydrogen permeation at 473 K. After hydrogen permeation at 473 K, some cracks were observed on the surface of Pd, which was the cause for the hydrogen embrittlement. The crystallization temperature of Zr-based amorphous alloy was decreased due to the permeated hydrogen.

Electrochemical Behaviors of Binary Ti-Zr Alloys

  • Oh, M.Y.;Kim, W.G.;Choe, H.C.;Ko, Y.M.
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.89-92
    • /
    • 2009
  • Pure Ti as well as Ti-6Al-4V alloy exhibit excellent properties for dental implant applications. However, for a better biocompatibility it seems important to avoid in the composition the presence of V due to the toxic effects of V ion release. Thus Al and V free and composed of non-toxic element such as Nb, Zr alloys as biomaterials have been developed. Especially, Zr contains to same family in periodic table as Ti. The addition of Zr to Ti alloy has an excellent mechanical properties, good corrosion resistance, and biocompatibility. In this study, the electrochemical characteristics of Ti-Zr alloys for biomaterials have been investigated using by electrochemical methods. Methods: Ti-Zr(10, 20, 30 and 40 wt%) alloys were prepared by arc melting and homogenized for 24 hr at $1000^{\circ}C$ in argon atmosphere. Phase constitutions and microstructure of the specimens were characterized by XRD, OM and SEM. The corrosion properties of the specimens were examined through potentiodynamic test (potential range of -1500 ~ 2000 mV), potentiostatic test (const. potential of 300 mV) in artificial saliva solution by potentiostat (EG&G Co, PARSTAT 2273. USA).

Fabrication of Bulk Metallic Glass Alloys by Warm Processing of Amorphous Powders (비정질 분말의 열간 성형법에 의한 벌크 비정질합금의 제조)

  • 이민하;김도향
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.193-201
    • /
    • 2004
  • 1960년 Au-Si계 합금에서 처음으로 비정질상이 급속 응고법에 의해 보고된 이래/sup 1)/ 지난 40년 간 많은 합금계에서 비정질상이 보고되어졌다. 대표적으로 Fe-, Ni-, Co기 합금 등 많은 합금계에서 비정질상이 보고되었으나, 비정질상의 형성을 위해서는 약 105 K/s이상의 높은 냉각속도를 필요로 하였다. 1980년대 수백 K/s의 낮은 냉각속도 하에서도 비정질상이 형성될 수 있는 다원계 합금(multi-component alloy)이 Mg-Ln-(Ni, Cu, Zn), Ln-Al-TM 합금에서 보고되어 졌으나 많은 관심을 받지 못하다가 1993년 Zr-Ti-Ni-Cu-Be 합금에서 수 ㎝ 크기의 비정질합금 제조가 보고되면서 전 세계적으로 많은 관심을 받게 되었다. Zr-Ti-Ni-Cu-Be계 벌크 비정질 합금이 보고된 후 Zr-(Nb,Pd)-Al-TM, Pd-Cu-Ni-P, Fe-Co-Zr-Mo-W-B, Ti-Zr-Ni-Cu-Sn등 여러 합금계에서 벌크 비정질 합금이 보고되었다. (중략)

The Effect of Sn on the Glass Formation Ability of the Zr-based Amorphous Alloy (Zr-based 비정질 합금의 비정질 특성에 미치는 Sn의 영향)

  • Lee, Byung-Chul;Park, Heong-Il;Park, Bong-Gyu;Kim, Sung-Gyoo
    • Journal of Korea Foundry Society
    • /
    • v.34 no.2
    • /
    • pp.49-53
    • /
    • 2014
  • In commercial Zr-Nb-Cu-Ni-Al amorphous alloys, expensive element, Zr, was substituted to Sn which was cheaper one, and then, glass forming ability, compressive strength and hardness of them were estimated. Even though the Sn was added up to 1.5%, resulting phase was not changed to the crystalline form. It was confirmed by X-ray diffraction and thermal analyses. In the X-ray profiles, there were no peaks for crystalline phases and typical halo pattern for amorphous phase was appeared at the diffraction angle of $35^{\circ}{\sim}45^{\circ}$. Thermal analyses also showed that the Sn modified alloys were corresponded to the amorphous standards where ${\delta}T$(= Tx - Tg) and Trg(= Tg/Tm) affecting to the amorphous forming ability were more than 50K and 0.60 respectively. Compressive strengths were 1.77 GPa, 1.63 GPa, 1.65 GPa and 1.77 GPa for 0%Sn, 0.5%Sn, 1.0%Sn and 1.5%Sn respectively. Hardnesses of the Sn modified alloys were decreased from 752 Hv to 702 Hv in 1.0%Sn and recovered to 746 Hv in 1.5%Sn.