• Title/Summary/Keyword: CoMSIA

Search Result 85, Processing Time 0.021 seconds

Cytotoxic Activity and Structure Activity Relationship of Ceramide Analogues in Caki-2 and HL-60 Cells

  • Kim, Yong-Jin;Kim, Eun-Ae;Sohn, Uy-Dong;Yim, Chul-Bu;Im, Chae-Uk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.441-447
    • /
    • 2010
  • B13, a ceramide analogue, is a ceramidase inhibitor and induces apoptosis to give potent anticancer activity. A series of thiourea B13 analogues was evaluated for their in vitro cytotoxic activities against human renal cancer Caki-2 and leukemic cancer HL-60 in the MTT assay. Some compounds (12, 15, and 16) showed stronger cytotoxicity than B13 and C6-ceramide against both tumor cell lines, and compound (12) gave the most potent activity with $IC_{50}$ values of 36 and $9\;{\mu}M$, respectively. Molecular modeling of thiourea B13 analogues was carried out by comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). We obtained highly reliable and predictive CoMSIA models with cross-validated $q^2$ values of 0.707 and 0.753 and CoMSIA contour maps to show the structural requirements for potent activity. These data suggest that the amide group of B13 could be replaced by thiourea, that the stereochemistry of 1,3-propandiol may not be essential for activity and that long alkyl chains increase cytotoxicity.

Docking and Quantitative Structure Activity Relationship studies of Acyl Guanidines as β-Secretase (BACE1) Inhibitor

  • Hwang, Yu Jin;Im, Chaeuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2065-2071
    • /
    • 2014
  • ${\beta}$-Secretase (beta-amyloid converting enzyme 1 [BACE1]) is involved in the first and rate-limiting step of ${\beta}$-amyloid ($A{\beta}$) peptides production, which leads to the pathogenesis of Alzheimer's disease(AD). Therefore, inhibition of BACE1 activity has become an efficient approach for the treatment of AD. Ligand-based and docking-based 3D-quantitative structure-activity relationship (3D-QSAR) studies of acyl guanidine analogues were performed with comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) to obtain insights for designing novel potent BACE1 inhibitors. We obtained highly reliable and predictive CoMSIA models with a cross-validated $q^2$ value of 0.725 and a predictive coefficient $r{^2}_{pred}$ value of 0.956. CoMSIA contour maps showed the structural requirements for potent activity. 3D-QSAR analysis suggested that an acyl guanidine and an amide group in the $R_6$ substituent would be important moieties for potent activity. Moreover, the introduction of small hydrophobic groups in the phenyl ring and hydrogen bond donor groups in 3,5-dichlorophenyl ring could increase biological activity.

Development of new agrochemicals by quantitative structure-activity relationship (QSAR) methodology. III. 3D QSAR methodologies and computer-assisted molecular design (CAMD) (정량적인 구조-활성상관 (QSAR) 기법에 의한 새로운 농약의 개발. III. 3D QSAR 기법들과 컴퓨터를 이용한 분자설계(CAMD))

  • Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.1
    • /
    • pp.1-11
    • /
    • 2003
  • Acoording to improvement of HTOS (high throughput organic synthesis) and HTS (high throughput screening) technique, the CoMFA (comparative molecular field analysis), CoMSIA (comparative molecular similarity indeces analysis) and molecular HQSAR (hologram quantitative structure-activity relationship) analysis techniques as methodology of computer assisted molecular design (CAMD) were introduced generally and summarized for some application cases.

Molecular Docking, 3D QSAR and Designing of New Quinazolinone Analogues as DHFR Inhibitors

  • Yamini, L.;Kumari, K. Meena;Vijjulatha, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2433-2442
    • /
    • 2011
  • The three dimensional quantitative structure activity relationship (3D QSAR) models were developed using Comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA) and docking studies. The fit of Quinazolinone antifolates inside the active site of modeled bovine dihydrofolate reductase (DHFR) was assessed. Both ligand based (LB) and receptor based (RB) QSAR models were generated, these models showed good internal and external statistical reliability that is evident from the $q^2_{loo}$, $r^2_{ncv}$ and $r^2_{pred}$. The identified key features enabled us to design new Quinazolinone analogues as DHFR inhibitors. This study is a building bridge between docking studies of homology modeled bovine DHFR protein as well as ligand and target based 3D QSAR techniques of CoMFA and CoMSIA approaches.

3D-QSAR Study of Competitive Inhibitor for Acethylcholine Esterase (AChE) Nerve Agent Toxicity

  • San Juan, Amor A.;Cho, Seung-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.216-221
    • /
    • 2006
  • The cholinesterase-inhibiting organophosphorous (OP) compounds known as nerve agents are highly toxic. The principal toxic mechanism of OP compounds is the inhibition of acethylcholine esterase (AChE) by phosphorylation of its catalytic site. The reversible competitive inhibition of AChE may prevent the subsequent OP intoxication. In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR) was performed to investigate the relationship between the 29 compounds with structural diversity and their bioactivities against AChE. In particular, predictive models were constructed using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The results indicate reasonable model for CoMFA ($q^{2}=0.453,\;r^{2}=0.697$) and CoMSIA ($q^{2}=0.518,\;r^{2}=0.696$). The presence of steric and hydophobic group at naphtyl moiety of the model may lead to the design of improved competitive inhibitors for organophosphorous intoxication.

3D-QSAR of Non-peptidyl Caspase-3 Enzyme Inhibitors Using CoMFA and CoMSIA

  • Lee, Do-Young;Hyun, Kwan-Hoon;Park, Hyung-Yeon;Lee, Kyung- A.;Lee, Bon-Su;Kim, Chan-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.273-276
    • /
    • 2006
  • Three dimensional quantitative structure-activity relationship studies for a series of isatin derivatives as a nonpeptidyl caspase-3 enzyme inhibitor were investigated using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The first approach of non-peptidyl small molecules by 3D QSAR may be useful in guiding further development of potent caspase-3 inhibitors.

Understanding the Protox Inhibition Activity of Novel 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzene Derivatives Using Comparative Molecular Similarity Indices Analysis (CoMSIA) Methodology (비교 분자 유사성 지수분석(CoMSIA) 방법에 따른 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chlore-4-fluorobenzene 유도체들의 Protox 저해 활성에 관한 이해)

  • Song, Jong-Hwan;Park, Kyung-Yong;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.47 no.4
    • /
    • pp.414-421
    • /
    • 2004
  • 3D QSAR studies for protox inhibition activities against root and shoot of the rice plant (Orysa sativa L.) and barnyardgrass (Echinochloa crus-galli) by a series of new 1-(5-methyl-3-phenylisoxazolin-5-yl)methoxy-2-chloro-4-fluorobenzene derivatives were conducted based on the results (Sung, N. D. et al.'s, (2004) J. Korean Soc. Appl. Biol. Chem. 47(3), 351-356) using comparative molecular similarity indices analysis (CoMSIA) methodology. Four CoMSIA models, without hydrogen bond donor field for the protox inhibition activities against root and shoot of the two plants, were derived from the combination of several fields using steric field, hydrophobic field, hydrogen bond acceptor field, LUMO molecular orbital field, dipole moment (DM) and molar refractivity (MR) as additional descriptors. The predictabilities and fitness of CoMSIA models for protox inhibition activities against barnyard-grass were higher than that of rice plant. The statistical results of these models showed the best predictability of the protox inhibition activities against barnyard-grass based on the cross-validated value $r^2\;_{cv}\;(q^2=0.635{\sim}0.924)$, non cross-validated, conventional coefficient $r^2\;_{ncv.}$ value $(r^2=0.928{\sim}0.977)$ and PRESS value $(0.255{\sim}0.273)$. The protox inhibition activities exhibited a strong correlation with the steric $(5.4{\sim}15.7%)$ and hydrophobic $(68.0{\sim}84.3%)$ factors of the molecules. Particularly, the CoMSIA models indicated that the groups of increasing steric bulk at ortho-position on the C-phenyl ring will enhance the protox inhibition activities against barnyard-grass and subsequently increase the selectivity.

3D-QSAR Analysis on Antidepressant Activity of Tricyclic Isoxazole Analogues against Medetomidine-induced Loss of Righting (Medetomidine에 유발된 정좌반사소실에 대한 Tricyclic Isoxazole 유도체들의 항우울성에 관한 3D-QSAR 분석)

  • Choi, Min-Sung;Sung, Nack-Do;Myung, Pyung-Keun
    • YAKHAK HOEJI
    • /
    • v.55 no.2
    • /
    • pp.98-105
    • /
    • 2011
  • To search the minimum structural requirement of tricyclic isoxazole analogues (1~30) as new class potent antidepressant, thee-dimensional quanti- tative-structure relationship (3D-QSAR) models between substituents ($R_1{\sim}R_5$) of tricyclic isoxazoles and their antidepressant activity against medetomidine-induced loss of righting were performed and discussed quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indies analysis (CoMSIA) methods. The correlativity and predictability ($r^2$=0.484 and $q^2$=0.947) of CoMSIA-2 model were higher than those of the rest models. The inhibitory activity against medetomidine-induced loss of righting was dependent on electrostatic field (43.4%), hydrophobic field (35.3%), and steric field (21.2%) of tricyclic isoxazoles. From the CoMSIA-2 contour maps, it is predicted that the antidepressant activity of potent antidepressants against medetomidine-induced loss of righting will be able to increase by the substituents ($R_1{\sim}R_5$) which were in accord with CoMSIA field.

3D-QSAR Analysis of Antidepressant, Tricyclic Isoxazole Analogues against para-Chloroamphetamine-induced Excitation (para-Chloroamphetamine에 유도된 흥분작용에 대한 항우울 약물 Tricyclic Isoxazole 유도체들의 3D-QSAR 분석)

  • Choi, Min-Sung;Sung, Nack-Do;Myung, Pyung-Keun
    • YAKHAK HOEJI
    • /
    • v.55 no.2
    • /
    • pp.91-97
    • /
    • 2011
  • To search a new anti-depressant agents against para-chloroamphetamine-induced excitation, three dimensional quantitative-structure relationships (3D-QSAR) models between structure of 3a,4-dihydro-3H-[1]-benzopyronao[4,3]isoxazoles (1-30) and thieir inhibitory activity against para-chloroamphetamine-induced excitation were performed and discussed quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. From these basis on the findings, the optimized CoMSIA-2F model ($q^2$=0.793 and $r^2$=0.952) showed the best statistical results. And also, it is found that the para-chloroamphetamine inhibitory activity from the optimized CoMSIA-2F model was dependent on steric field (35.2%) and electrostatic field (64.8%) of tricyclic isoxazoles. Particularly, it is predicted that the inhibitory activity against para-chloroamphetamine-induced excitation will be able to increase by the designed compounds from the CoMSIA-2F model.

3D-QSARs Analysis on the Fungicidal Activity with N-phenylbenzenesulfonamide Analogues against Fusarium wilt (Fusarium oxysporum) (N-phenylbenzenesulfonamide 유도체들에 의한 시들음병균(Fusarium oxysporum)의 살균활성에 관한 3D-QSARs 분석)

  • Soung, Min-Gyu;Hwang, Tae-Yeon;Kang, Kyu-Young;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.38-43
    • /
    • 2008
  • 3D-QSARs on the fungicidal activity with N-phenylbenzenesulfonamide and N-phenyl-2-thienylsul-fonamide analogues (1-34) against Fusarium wilt (Fusarium oxysporum) were discussed quantitatively using CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) methods, respectively. Generally, the CoMFA models have better predictability and fitness than the CoMSIA models. The fungicidal activities, according to the information of the optimized CoMF A 2 model $(r^2\;_{cv.}=0.523\;&\;r^2\;_{ncv.}=0.956)$, were dependent on the electrostatic field of the N-phenylbenzenesulfonamide analogues. Therefore, from the results of graphical analyses on the contour maps with the optimized CoMFA 2 model, it is expected that the characters of $R_4-substituents$ on the N-phenyl ring as steric and positive charge favor will contribute to the fungicidal activity against Fusarium wilt.