• Title/Summary/Keyword: CoA transferase gene

Search Result 32, Processing Time 0.024 seconds

Molecular Characterization of the Genes Encoding Acetoacetyl-Coenzyme A Transferase from Serratia marcescens KCTC 2172

  • Yoo, Ju-Soon;Kim, Hae-Sun;Lee, Young-Choon;Chung, Soo-Yeol;Choi, Yong-Lark
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.870-875
    • /
    • 2001
  • A DNA fragment, pCKB13, containing two genes encoding Coenzyme a transferase, was isolated from a genomic DNA library of S. marcescens KCTC 2172. The complete nucleotide sequence of the 2,081-bp BamHI fragment on pCKB13 was determined. Sequencing of the fragment led to the identification of two open reading frames showing high homology with two Coenzyme A (CoA) transferases, Acetoacetyl-CoA transferase (Acot) and Succinyl-CoA transferase (Scot), enzymes catalyzing the reversible transfer of CoA from one carboxylic acid to another. The enzyme activity of Coenzyme A transferase increased after introducing the multicopy of the cloned gene in E. coli. The recombinant protein, overexpressed by multicopy and induction with IPTG, was a polypeptide of 42 kDa, as confirmed by SDS-PAGE. The protein was purified to homogeneity through three sequential chromatographic procedures including ion-exchanged DEAE-sepharose, CM-sepharose, and Mono Q.

  • PDF

Cloning and Expression of Serratia marcescens Coenzyme A(CoA) Transferase Gene in E. coli

  • Choi, Yong-Lark;Kim, Hae-Sun;Yoo, Ju-Soon;Kim, Yong-Gyun;Chung, Chung-Han
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.54-57
    • /
    • 1999
  • We have got several clones from Serratia marcescens which stimulated the cells to use maltose as a carbon source in E. coli TP2139 (${\Delta}$lac, ${\Delta}$crp). One of the cloned genes, pCKB13, was further analyzed. In order to find whether the increased expression of the gene under the direction of maltose metabolism, we constructed several recombinant subclones. We have confirmed that the clone, pCKB13 codes Coenzyme A transferase gene by partial nucleotide sequencing in the terminal region. The enzyme activity of Coenzyme A transferase increased after introduction of the multicopy of the cloned gene in E. coli. The recombinant proteins expressed by multicopy and induction with IPTG, two polypeptide of 26-and 28-kDa, were confirmed by SDS-PAGE. Southern hybridization analysis confirmed that the cloned DNA fragment was originated from S. marcescens chromosomal DNA.

  • PDF

An Efficient System for the Expression and Purification of Yeast Geranylgeranyl Protein Transferase Type I

  • Kim, Hyun-Kyung;Kim, Young-Ah;Yang, Chul-Hak
    • BMB Reports
    • /
    • v.31 no.1
    • /
    • pp.77-82
    • /
    • 1998
  • To purify the geranylgeranyl protein transferase type I (GGPT-I) efficiently, a gene expression system using the pGEX-4T-1 vector was constructed. The cal1 gene, encoding the ${\beta}$ subunit of GGPT-I, was subcloned into the pGEX-4T-1 vector and co-transformed into E. coli cells harboring the ram2 gene, the ${\alpha}$ subunit gene of GGPT-I. GGPT-I was highly expressed as a fusion protein with glutathione S-transferase (GST) in E. coli, purified to homogeneity by glutathione-agarose affinity chromatography, and the GST moiety was excised by thrombin treatment. The purified yeast GGPT-I showed a dose-dependent increase in the transferase activity, and its apparent $K_m$ value for an undecapeptide fused with GST (GST-PEP) was $0.66\;{\mu}M$ and the apparent value for geranylgeranyl pyrophosphate (GGPP) was $0.071\;{\mu}M$.

  • PDF

Biosynthesis of Lactate-containing Polyhydroxyalkanoates in Recombinant Escherichia coli by Employing New CoA Transferases (재조합 대장균에서 새로운 코엔자임 에이 트랜스퍼레이즈를 이용한 젖산을 모노머로 함유한 폴리하이드록시알칸산 생산 연구)

  • Kim, You Jin;Chae, Cheol Gi;Kang, Kyoung Hee;Oh, Young Hoon;Joo, Jeong Chan;Song, Bong Keun;Lee, Sang Yup;Park, Si Jae
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • Several CoA transferases from Clostridium beijerinckii, C. perfringens and Klebsiella pneumoniae were examined for biosynthesis of lactate-containing polyhydroxyalkanoates (PHAs) in recombinant Escherichia coli XL1-Blue strain. The CB3819 gene and the CB4543 gene from C. beijerinckii, the pct gene from C. perfringens and the pct gene from K. pneumoniae, which encodes putative CoA transferase gene, respectively, was co-expressed with the Pseudomonas sp. MBEL 6-19 phaC1437 gene encoding engineered Pseudomonas sp. MBEL 6-19 PHA synthase 1 ($PhaC1_{Ps6-19}$) to examine its activity for the construction of key metabolic pathway to produce poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)]. The recombinant E. coli XL1-Blue expressing the phaC1437 gene and CB3819 gene synthesized poly(3-hydroxybutyrate) [P(3HB)] homopolymer to the P(3HB) content of 60.5 wt% when it was cultured in a chemically defined medium containing 20 g/L of glucose and 2 g/L of sodium 3-hydroxybutyrate. Expression of the phaC1437 gene and CB4543 gene in recombinant E. coli XL1-Blue also produced P(3HB) homopolymer to the P(3HB) content of 51.2 wt% in the same culture condition. Expression of the phaC1437 gene and the K. pneumoniae pct gene in recombinant E. coli XL1-Blue could not result in the production of PHAs in the same culture condition. However, the recombinant E. coli XL1-Blue expressing the phaC1437 gene and the C. perfringens gene could produce poly(3-hydroxybutyrate-co-lactate [P(86.4mol%3HB-co-13.7 mol%LA) up to the PHA content of 10.6 wt% in the same culture condition. Newly examined CoA transfereases in this study may be useful for the construction of engineered E. coli strains to produce PHA containing novel monomer such lactate.

Nicorandil alleviated cardiac hypoxia/reoxygenation-induced cytotoxicity via upregulating ketone body metabolism and ACAT1 activity

  • Bai, Yan Ping;Han, Lei Sen
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.37-45
    • /
    • 2019
  • To study the effect of nicorandil pretreatment on ketone body metabolism and Acetyl-CoA acetyltransferase (ACAT1) activity in hypoxia/reoxygenation (H/R)-induced cardiomyocytes. In our study, we applied H9c2 cardiomyocytes cell line to evaluate the cardioprotective effects of nicorandil. We detected mitochondrial viability, cellular apoptosis, reactive oxygen species (ROS) production and calcium overloading in H9c2 cells that exposed to H/R-induced cytotoxicity. Then we evaluated whether nicorandil possibly regulated ketone body, mainly ${\beta}$-hydroxybutyrate (BHB) and acetoacetate (ACAC), metabolism by regulating ACAT1 and Succinyl-CoA:3-ketoacid coenzyme A transferase 1 (OXCT1) protein and gene expressions. Nicorandil protected H9c2 cardiomyocytes against H/R-induced cytotoxicity dose-dependently by mitochondria-mediated anti-apoptosis pathway. Nicorandil significantly decreased cellular apoptotic rate and enhanced the ratio of Bcl-2/Bax expressions. Further, nicorandil decreased the production of ROS and alleviated calcium overloading in H/R-induced H9c2 cells. In crucial, nicorandil upregulated ACAT1 and OXCT1 protein expressions and either of their gene expressions, contributing to increased production of cellular BHB and ACAC. Nicorandil alleviated cardiomyocytes H/R-induced cytotoxicity through upregulating ACAT1/OXCT1 activity and ketone body metabolism, which might be a potential mechanism for emerging study of nicorandil and other $K_{ATP}$ channel openers.

Enhanced Gene Expression by Fusion to Rice-ubiquitin in Yeast

  • Kim, Young-Mi
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.1-4
    • /
    • 2000
  • Chloramphenicol acetyl CoA transferase (CAT) and angiotensin- converting enzyme inhibitory peptide (ACEI) were fused to C-terminal region of rice ubiquitin to examine the level of transcripts or enzyme activities in yeast. When two chimeric genes under an inducible Gall promoter control were transformed into Saccharomyces cerevisaie, both CAT and ACE inhibitory activities were enhanced by three to four-fold as compared to those containing no ubiquitin gene. However, the levels of transcripts of ubiquitin fused and un fused genes were not significantly different each other. Therefore, it was suggested that the expression of foreign genes was post-transcriptionally enhanced by fusion of plant ubiquitin in heterologous organisms such as yeast.

  • PDF

MLL5, a histone modifying enzyme, regulates androgen receptor activity in prostate cancer cells by recruiting co-regulators, HCF1 and SET1

  • Lee, Kyoung-Hwa;Kim, Byung-Chan;Jeong, Chang Wook;Ku, Ja Hyeon;Kim, Hyeon Hoe;Kwak, Cheol
    • BMB Reports
    • /
    • v.53 no.12
    • /
    • pp.634-639
    • /
    • 2020
  • In prostate cancer, the androgen receptor (AR) transcription factor is a major regulator of cell proliferation and metastasis. To identify new AR regulators, we focused on Mixed lineage leukemia 5 (MLL5), a histone-regulating enzyme, because significantly higher MLL5 expression was detected in prostate cancer tissues than in matching normal tissues. When we expressed shRNAs targeting MLL5 gene in prostate cancer cell line, the growth rate and AR activity were reduced compared to those in control cells, and migration ability of the knockdown cells was reduced significantly. To determine the molecular mechanisms of MLL5 on AR activity, we proved that AR physically interacted with MLL5 and other co-factors, including SET-1 and HCF-1, using an immunoprecipitation method. The chromatin immunoprecipitation analysis showed reduced binding of MLL5, co-factors, and AR enzymes to AR target gene promoters in MLL5 shRNA-expressing cells. Histone H3K4 methylation on the AR target gene promoters was reduced, and H3K9 methylation at the same site was increased in MLL5 knockdown cells. Finally, xenograft tumor formation revealed that reduction of MLL5 in prostate cancer cells retarded tumor growth. Our results thus demonstrate the important role of MLL5 as a new epigenetic regulator of AR in prostate cancer.

Biosynthesis of Lactate-containing Polyhydroxyalkanoates in Recombinant Escherichia coli from Sucrose (재조합 대장균에서 수크로즈로부터의 젖산을 모노머로 함유한 폴리하이드록시알칸산 생산 연구)

  • Oh, Young Hoon;Kang, Kyoung-Hee;Shin, Jihoon;Song, Bong Keun;Lee, Seung Hwan;Lee, Sang Yup;Park, Si Jae
    • KSBB Journal
    • /
    • v.29 no.6
    • /
    • pp.443-447
    • /
    • 2014
  • Biosynthesis of lactate-containing polyhydroxyalkanoates (PHAs) was examined in recombinant Escherichia coli W strain from sucrose. The Pseudomonas sp. MBEL 6-19 phaC1437 gene and the Clostridium propionicum pct540 gene, which encode engineered Pseudomonas sp. MBEL 6-19 PHA synthase 1 ($PhaC1_{Ps6-19}$) and engineered C. propionicum propionyl-CoA transferase ($Pct_{Cp}$), respectively, were expressed in E. coli W to construct key metabolic pathway to produce poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)]. The recombinant E. coli W expressing the phaC1437 gene and the pct540 gene could synthesize P(3HB-co-13mol%LA) up to the polymer content of 31.3 wt% when it was cultured in chemically defined MR medium containing 20 g/L of sucrose and 2 g/L of sodium 3-hydroxybutyrate. When Ralstonia eutropha phaAB genes were additionally expressed to provide 3-hydroxybutyrate-CoA (3HB-CoA) from sucrose, P(3HB-co-16mol%LA) could be synthesized from sucrose as a sole carbon source without supplement of sodium 3-hydroxybutyrate in culture medium, but the PHA content was decreased to 12.2 wt%. The molecular weight of P(3HB-co-16 mol%LA) synthesized in E. coli W using sucrose as carbon source were $1.53{\times}10^4$ ($M_n$) and $2.78{\times}10^4$ ($M_w$), respectively, which are not different from those that have previously been reported by other recombinant E. coli strains. Engineered E. coli strains developed in this study should be useful for the production of lactate-containing PHAs from sucrose, one of the most abundant and least expensive carbon sources.

Effects of Culture Mechanism of Cinnamomum kanehirae and C. camphora on the Expression of Genes Related to Terpene Biosynthesis in Antrodia cinnamomea

  • Zhang, Zhang;Wang, Yi;Yuan, Xiao-Long;Luo, Ya-Na;Luo, Ma-Niya;Zheng, Yuan
    • Mycobiology
    • /
    • v.50 no.2
    • /
    • pp.121-131
    • /
    • 2022
  • The rare edible and medicinal fungus Antrodia cinnamomea has a substantial potential for development. In this study, Illumina HiSeq 2000 was used to sequence its transcriptome. The results were assembled de novo, and 66,589 unigenes with an N50 of 4413 bp were obtained. Compared with public databases, 6,061, 3,257, and 2,807 unigenes were annotated to the Non-Redundant, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes databases, respectively. The genes related to terpene biosynthesis in the mycelia of A. cinnamomea were analyzed, and acetyl CoA synthase (ACS2 and ACS4), hydroxymethylglutaryl CoA reductase (HMGR), farnesyl transferase (FTase), and squalene synthase (SQS) were found to be upregulated in XZJ (twig of C. camphora) and NZJ (twig of C. kanehirae). Moreover, ACS5 and 2,3-oxidized squalene cyclase (OCS) were highly expressed in NZJ, while heme IX farnesyl transferase (IX-FIT) and ACS3 were significantly expressed in XZJ. The differential expression of ACS1, ACS2, HMGR, IX-FIT, SQS, and OCS was confirmed by real-time quantitative reverse transcription PCR. This study provides a new concept for the additional exploration of the molecular regulatory mechanism of terpenoid biosynthesis and data for the biotechnology of terpenoid production.

Somatic cell score: gene polymorphisms and other effects in Holstein and Simmental cows

  • Citek, Jindrich;Brzakova, Michaela;Hanusova, Lenka;Hanus, Oto;Vecerek, Libor;Samkova, Eva;Jozova, Eva;Hostickova, Irena;Travnicek, Jan;Klojda, Martin;Hasonova, Lucie
    • Animal Bioscience
    • /
    • v.35 no.1
    • /
    • pp.13-21
    • /
    • 2022
  • Objective: The aim of the study was to evaluate the influence of gene polymorphisms and nongenetic factors on the somatic cell score (SCS) in the milk of Holstein (n = 148) and Simmental (n = 73) cows and their crosses (n = 6). Methods: The SCS was calculated by the formula SCS = log2(SCC/100,000)+3, where SCC is the somatic cell count. Polymorphisms in the casein alpha S1 (CSN1S1), beta-casein (CSN2), kappa-casein (CSN3), beta-lactoglobulin (LGB), acyl-CoA diacylglycerol transferase 1 (DGAT1), leptin (LEP), fatty acid synthase (FASN), stearoyl CoA desaturase 1 (SCD1), and 1-acylglycerol-3-phosphate O-acyltransferase 6 (AGPAT6) genes were genotyped, and association analysis to the SCS in the cow's milk was performed. Further, the impact of breed, farm, year, month of the year, lactation stage and parity on the SCS were analysed. Phenotype correlations among SCS and milk constituents were computed by Pearson correlation coefficients. Results: Only CSN2 genotypes A1/A2 were found to have significant association with the SCS (p<0.05), and alleles of CSN1S1 and DGAT1 genes (p<0.05). Other polymorphisms were not found to be significant. SCS had significant association with the combined effect of farm and year, lactation stage and month of the year. Lactation parity and breed had not significant association with SCS. The phenotypic correlation of SCS to lactose content was negative and significant, while the correlation to protein content was positive and significant. The correlations of SCS to fat, casein, nonfat solids, urea, citric acid, acetone and ketones contents were very low and not significant. Conclusion: Only CSN2 genotypes, CSN1S1 and DGAT1 alleles did show an obvious association to the SCS. The results confirmed the importance of general quality management of farms on the microbial milk quality, and effects of lactation stage and month of the year. The lactose content in milk reflects the health status of the udder.