• Title/Summary/Keyword: Co2 decomposition

Search Result 585, Processing Time 0.038 seconds

Studies on Physicochemical and Biological Properties of Depolymerized Alginate from Sea tangle, Laminalia japonicus by Thermal Decomposition 7. Effects of Depolymerized Alginate on Fecal Composition in Rats (다시마 (Laminaria japonicus) Alginate의 가열가수분해에 따른 물리$\cdot$화학적 및 생물학적 특성에 관한 연구 7. 저분자 Alginate에 의한 랫드 분변의 성분 변화)

  • KIM Yuck-Yong;CHO Young-Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.2
    • /
    • pp.84-90
    • /
    • 2001
  • This study was performed to know the effect of depolymerized alginate obtained by hydrolysis of alginate through a heating process at $121^{\circ}C$ on intestinal environment, Rats were fed with diets containing $1\%$, $5\%$, and $10\%$ of each depolymerized alginate (HAG-10, HAG-50, HAG-100 and alginate) for 35 days, The changes of weight, moisture content, pH and volatile basic nitrogen (VBN) of fecal, and a short chain fatty acids (SCFA) were checked in the rats. The fecal weight and moisture content were the highest in rats fed with alginate diets (p<0.01), followed by HAG-100, HAG-50 and HAG-10 in order. The $5\%$ of HAG-50 diets induced a significant increase in contents of protein and lipid of feces, resulting in the decrease of apparent digestibility of protein and lipid (p<0.01). The pH and VBN content in feces of the rats decreased in $5\%$ and $10\%$ of HAG-50 diets, but $10\%$ of HAG-100 diets; $5\%$ and $10\%$ of alginate diets brought about an increase of fecal pH and VBN (p<0.01), The amount of n-butyric acid in feces was increased while propionic and acetic acid contents decreased significantly (p<0.01) in diets containing $5\%$ and $10\%$ HAG-50. However, the feces of rat fed diet containing $5\%$ and $10\%$ alginate showed a tendency to being opposite in results than that of HAG-50.

  • PDF

Studies on Physicochemical and Biological Properties of Depolymerized Alginate from Sea tangle, Laminaria japonicus by Thermal Decomposition 6. Effects of Depolymerized Alginate on fecal Microflora in Rats (다시마 (Laminaria japonicus) Alginate의 가열가수분해에 따른 물리$\cdot$화학적 및 생물학적 특성에 관한 연구 6. 랫드 분변의 장내균총의 변화에 미치는 저분자 Alginate의 영향)

  • KIM Yuck-Yong;CHO Young-Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.2
    • /
    • pp.77-83
    • /
    • 2001
  • To clarify functionality of depolymerized alginate obtained by hydrolysis of alginate through a heating process at $121^{\circ}C$ on gastrointestinal physiology, the effects of a depolymerized alginate on fecal microflora and the intestinal environment were studied in rats. Rats were fed with diets containing 1, 5 and $10\%$ of each depolymerized alginate (HAG-10, HAG-50 and HAG-100) and alginate for 35 days, Among 20 species of authentic intestinal bacteria, Bacteroides ovatus showed the abilities to ferment HAG-10 HAG-50, HAG-100 and alginate, The 1, 5 and $10\%$ of HAG-50 and $1\%$ of alginate diets resulted in the increased ratio of Bifidobacterium and Lactobacillus to total bacteria, while the 5 and $10\%$ alginate diets decreased in feces of rats, significantly (p<0.01). These results suggested that $5\%$ HAG-50 diets contribute to an improvement of intestinal microflora in rats.

  • PDF

Analysis of the Relationship between the Seasonal Temperature Change and the Electrical Resistivity Value of Landfill Site (매립지의 계절별 온도변화와 전기비저항값의 상관성 분석)

  • Sim, Nak Jong;Ryu, Don Sik;Kim, Chang Gyun;Lee, Chul Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.9
    • /
    • pp.534-541
    • /
    • 2017
  • The bioreactor type of landfill is to operate to enhance waste decomposition by continuously supplying water such as leachate and wastewater within the landfill, which helps increase the landfill gas production, which in turn prematurely stabilize the landfill. Recently, the environmental law for the operation of the bioreactor type of landfill has been enacted and thereafter the bioreactor type of landfill has been introduced for the first time in Korea to the SUDOKWON landfill site. In order to properly apply for bioreactor to the landfill, it is necessary to investigate the water distribution inside the landfill so that water recirculation should be optimally allocated with the zone of concern. In this regard, electrical resistivity survey has been suitably performed to delineate the water distribution in the landfill. That is, it has surveyed for long-term of period that the recirculation of leachate has been properly reflected from electrical resistivity within the second landfill of SUDOKWON landfill site. As a result, the electrical resistivity immediately corresponded to the variation of the extent of the seasonal temperature dynamics. From this, a calibratrion could be accomplished by correlating between temperature and electrical resistivity obtained from this study that can be applicable for optimally monitoring to keep the ideal operating condition for the bioreactor type of landfill.

Bioethanol Production from Macroalgal Biomass (해조류 바이오매스를 이용한 바이오에탄올 생산기술)

  • Ra, Chae Hun;Sunwoo, In Young;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.976-982
    • /
    • 2016
  • Seaweed has high growth rate, low land usage, high CO2 absorption and no competition for food resources. Therefore, the use of lignin-free seaweed as a raw material is arising as a third generation biomass for bioethanol production. Various pretreatment techniques have been introduced to enhance the overall hydrolysis yield, and can be categorized into physical, chemical, biological, enzymatic or a combination. Thermal acid hydrolysis pretreatment is one of the most popular methods to attain high sugar yields from seaweed biomass for economic reasons. At thermal acid hydrolysis conditions, the 3,6-anhydro-galactose (AHG) from biomass could be converted to 5-hydroxymethylfurfural (HMF), which might inhibit the cell growth and decrease ethanol production. AHG is prone to decomposition into HMF, due to its acid-labile character, and subsequently into weak acids such as levulinic acid and formic acid. These inhibitors can retard yeast growth and reduce ethanol productivity during fermentation. Thus, the carbohydrates in seaweed require effective treatment methods to obtain a high concentration of monosaccharides and a low concentration of inhibitor HMF for ethanol fermentation. The efficiency of bioethanol production from the seaweed biomass hydrolysate is assessed by separate hydrolysis and fermentation (SHF). To improve the efficiency of the ethanol fermentation of mixed monosaccharides, the adaptation of yeast to high concentration of sugar could make simultaneous utilization of mixed monosaccharides for the production of ethanol from seaweed.

Hazardous Metal Content in Tattoo Cosmetics and Tattoo Inks (타투화장품 및 문신용 염료의 유해금속 함량 연구)

  • Mi Sun Kim;Su Un Kim;Sam Ju Jung;Young Eun Kim;Min Jung Kim;Myung Sook Lee;In Sook Hwang
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.2
    • /
    • pp.66-77
    • /
    • 2023
  • Background: Along with the increase in consumer interest in and consumption of tattoo products, the controversy over harmful heavy metals associated with the use of tattoo cosmetics is also increasing. Therefore, investigation of hazardous metals in these tattoo products is needed. Objectives: This study was performed to provide useful data for establishing reasonable standards to securely manage tattoo cosmetics, tattoo stickers, and tattoo inks distributed in the market. Methods: Thirteen kinds of hazardous metal contents (Pb, As, Cd, Sb, Ni, Co, Cu, Cr, Se, Ba, Zn, Sn, and Hg) were analyzed for 23 tattoo cosmetics, ten tattoo stickers, and 16 tattoo inks. Hg was measured through the combustion-gold amalgamation method, and other hazardous metals were measured by inductively coupled plasma-mass spectrometry (ICP-MS) after acidic decomposition using a microwave apparatus. Results: The detected ranges of Pb, As, Cd, Sb, Ni, and Hg in tattoo cosmetics were 0.07~1.18, 0.06~0.41, ND~0.07, 0.01~3.44, 0.12~2.75, and ND~0.01 ㎍/g, respectively. All of the hazardous metals detected were below the recommended maximum standards of the Ministry of Food and Drug Safety. The mean amount of Pb detected in tattoo stickers for children was 0.24 ㎍/kg and Cd was not detected, meaning both metals met the recommended criteria. There was no statistically significant difference in all measured metals between children's tattoo stickers and adults' tattoo stickers. In the results of the study on the hazardous metal content of tattoo inks, four products (25%) for Pb, one product (6%) for As, 13 products (81%) for Ni, four products (25%) for Cu, and five products (31%) for Zn exceeded the recommended standards approved by the government. The highest predicted exposure amount for hazardous metals exceeding the recommended level of tattoo inks in a single tattooing was 5.69 ㎍/kg for Ni, 8.51 ㎍/kg for Zn, 0.44 ㎍/kg for Pb, 8.07 ㎍/kg for Cu, 0.44 ㎍/kg for As, and 71.36 ㎍/kg for Ba. Conclusions: It is necessary to prepare criteria for content limitation for the management of Co, Cr, Ba and Se tattoo cosmetics, and tattoo inks require thorough quality control.

Studies on Degradation of Nucleic acid and Related Compounds by Microbial Enzymes (미생물 효소에 의한 핵산 및 그의 관련물질의 분해에 관한 연구)

  • Kim, Sang-Soon
    • Applied Biological Chemistry
    • /
    • v.13 no.2
    • /
    • pp.111-129
    • /
    • 1970
  • As a series of studies on the nucleic acids and their related substances 210 samples were collected from 76 places such as farm soil, compost of heap, nuruk and meju to obtain microbial strains which produce 5'-phosphodiesterase. From these samples total of 758 strains were isolated by the use of dilution pour plate method. For all isolated strains primary screening of the productivity of RNA depolymerase was performed and useful strains with regard to 5'-phosphodiesterase productivities were identified. For these useful strains optimum condition, the effect of various compounds on the activity of 5'-phosphodiesterase, and the optimum condition for enzyme reaction were discussed. The quantitative of 5'-mononucleotides produced by the action of 5'-phosphodiesterase was performed using anion-exchange column chromatography and their identified was done by paper chromatography, thinlayer chromatography, ultra violet spectrophotometry, and characteristic color reaction using carbazole and schiff's reagent. (1) Penicillium citreo-viride PO 2-11 and Streptomyces aureus SOA 4-21 from soil were identified as a potent 5'-phosphodiesterase producing strains. (2) Optimum culture conditions for Penicillium citreo-viride PO 2-11 strain isolated were found to be pH 5.0 and $30^{\circ}C$, and the optimum conditions for enzyme action of 5'-phosphodiesterase were pH 4.2 and $60^{\circ}C$. Best carbon source for the production of 5'-phosphodiesterase was found to be sucrose and ammonium nitrate for nitrogen source. Addition of 0.01% corn steep liquor or yeast extract exhibited 20% increase in the amount of 5'-phosphodiesterase production compared to the control. 5'-phosphodiesterase produced by this strain was activated by $Mg^{++},\;Ca^{++},\;Zn^{++},\;Mn^{++}$ and was inhibited by EDTA, citrate, $Cu^{++},\;CO^{++}$. 5'-phosphodiesterase produced 5'-mononucleotide from RNA at a rate of 65.81%, and among the 5'-mononucleotides accumulated 5'-GMP only was found to have flavorous and the strain was also found lack of 5'-AMP deaminase. Productivity of flavorous 5'-GMP was found to be 186.7mg per gram of RNA. (3) Optimum culture canditions for the isolated Streptomyces aureus SOA 4-21 strain were pH 7.0 and $28^{\circ}C$, and the optimum conditions for the action of 5'-phosphodiesterase were pH 7.3 and $50^{\circ}C$. The best carbon source for 5'-phosphodiesterase production was found to be glucose and that of nitrogen was asparagine. Addition of 0.01% yeast extract exhibited increased productivity of 5'-phosphodiesterase by 40% compared to the non-added control. 5'-phosphodiesterase produced by this strain was activated by $Ca^{++},\;Zn^{++},\;Mn^{++}$ and was inhibited by citrate, EDTA, $Cu^{++}$. It was also found that the strain produce 5'-AMP deaminase in addition to 5'-phosphodiesterase. For this reason although decomposition rate was 63.58% the accumulation of 5'-AMP, 5'-CMP, 5'-GMP and 5'-UMP occurred by the breakdown of RNA. In the course of these reaction 5'-AMP deaminase converted 60% of 5'-AMP thus produced into 5'-IMP and flavorous 5'-mono nucleotide production was significantly increased by this strain over the above mentioned one. Production rates were found to be 171.8mg per grain of RNA for 5'-IMP and 148.2mg per gram of RNA for 5'-GMP, respectively.

  • PDF

The Effect of Au Addition on the Hardening Mechanism in Ag-30wt%Pd-10wt%Cu Alloy (Ag-30wt% Pd-10wt% Cu 3원합금(元合金) 및 Au 첨가합금(添加合金)의 시효경화특성(時效硬化特性))

  • Lee, K.D.;Nam, S.Y.
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.27-41
    • /
    • 1999
  • The Ag-Pd-Cu alloys containing a small amount of Au is commonly used for dental purposes, because this alloy cheaper than Au-base alloys for clinical use. However, the most important characteristic of this alloy is age-hardenability, which is not exhibited by other Ag-base dental alloys. The specimens used were Ag-30Pd-10Cu ternary alloy and Au addition alloy. These alloys were melted and casted by induction electric furnace and centrifugal casting machine in Ar atmosphere. These specimens were solution treated for 2hr at $800^{\circ}C$ and were then quenched into iced water, and aged at 350-$550^{\circ}C$ Age-hardening characteristic of the small Au-containing Ag-Pd-Cu dental alloys were investigated by means of hardness testing, X-ray diffraction and electron microscope observations, electrical resistance, differential scanning calorimetric, energy dispersed spectra and electron probe microanalysis. Principal results are as follows ; Maximum hardening occured in two co-phases of ${\alpha}_2$ + PdCu In stage II, decomposition of the $\alpha$ solid solution to a PdCu ordered phase($L1_o$ type) and an Ag-rich ${\alpha}_2$ phase occurred and a discontinuous precipitation occurred at the grain boundary. From the electron microscope study, it was concluded that the cause of age-hardening in this alloy is the precipitation of the PdCu redered phase, which has AuCu I type face-centered tetragonal structure. Precipitation procedure was ${\alpha}{\to}{\alpha}_1+PdCu{\to}{\alpha}_2+PdCu$ at Pd/Cu = 3 Pd element of Ag-Pd-Cu alloy is more effective dental alloy on anti-corrosion and is suitable to isothermal ageing at $450^{\circ}C$.

  • PDF

Perfluoropolymer Membranes of Tetrafluoroethylene and 2,2,4Trifluofo- 5Trifluorometoxy- 1,3Dioxole.

  • Arcella, V.;Colaianna, P.;Brinati, G.;Gordano, A.;Clarizia, G.;Tocci, E.;Drioli, E.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.39-42
    • /
    • 1999
  • Perfluoropolymers represent the ultimate resistance to hostile chemical environments and high service temperature, attributed to the presence of fluorine in the polymer backbone, i.e. to the high bond energy of C-F and C-C bonds of fluorocarbons. Copolymers of Tetrafluoroethylene (TEE) and 2, 2, 4Trifluoro-5Trifluorometoxy- 1, 3Dioxole (TTD), commercially known as HYFLON AD, are amorphous perfluoropolymers with glass transition temperature (Tg)higher than room temperature, showing a thermal decomposition temperature exceeding 40$0^{\circ}C$. These polymer systems are highly soluble in fluorinated solvents, with low solution viscosities. This property allows the preparation of self-supported and composite membranes with desired membrane thickness. Symmetric and asymmetric perfluoropolymer membranes, made with HYFLON AD, have been prepared and evaluated. Porous and not porous symmetric membranes have been obtained by solvent evaporation with various processing conditions. Asymmetric membranes have been prepared by th wet phase inversion method. Measure of contact angle to distilled water have been carried out. Figure 1 compares experimental results with those of other commercial membranes. Contact angles of about 120$^{\circ}$for our amorphous perfluoropolymer membranes demonstrate that they posses a high hydrophobic character. Measure of contact angles to hexandecane have been also carried out to evaluate the organophobic character. Rsults are reported in Figure 2. The observed strong organophobicity leads to excellent fouling resistance and inertness. Porous membranes with pore size between 30 and 80 nanometers have shown no permeation to water at pressures as high as 10 bars. However high permeation to gases, such as O2, N2 and CO2, and no selectivities were observed. Considering the porous structure of the membrane, this behavior was expected. In consideration of the above properties, possible useful uses in th field of gas- liquid separations are envisaged for these membranes. A particularly promising application is in the field of membrane contactors, equipments in which membranes are used to improve mass transfer coefficients in respect to traditional extraction and absorption processes. Gas permeation properties have been evaluated for asymmetric membranes and composite symmetric ones. Experimental permselectivity values, obtained at different pressure differences, to various single gases are reported in Tab. 1, 2 and 3. Experimental data have been compared with literature data obtained with membranes made with different amorphous perfluoropolymer systems, such as copolymers of Perfluoro2, 2dimethyl dioxole (PDD) and Tetrafluorethylene, commercialized by the Du Pont Company with the trade name of Teflon AF. An interesting linear relationship between permeability and the glass transition temperature of the polymer constituting the membrane has been observed. Results are descussed in terms of polymer chain structure, which affects the presence of voids at molecular scale and their size distribution. Molecular Dyanmics studies are in progress in order to support the understanding of these results. A modified Theodoru- Suter method provided by the Amorphous Cell module of InsightII/Discover was used to determine the chain packing. A completely amorphous polymer box of about 3.5 nm was considered. Last but not least the use of amorphous perfluoropolymer membranes appears to be ideal when separation processes have to be performed in hostile environments, i.e. high temperatures and aggressive non-aqueous media, such as chemicals and solvents. In these cases Hyflon AD membranes can exploit the outstanding resistance of perfluoropolymers.

  • PDF

New Estimates of CH4 Emission Scaling Factors by Amount of Rice Straw Applied from Korea Paddy Fields (볏짚 시용에 따른 벼 재배 논에서의 메탄 배출계수 개발에 관한 연구)

  • Ju, Okjung;Won, Tae-Jin;Cho, Kwang-Rae;Choi, Byoung-Rourl;Seo, Jae-Sun;Park, In-Tae;Kim, Gun-Yeob
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.179-184
    • /
    • 2013
  • BACKGROUND: Accurate estimates of total direct $CH_4$ emissions from croplands on a country scale are important for global budgets of anthropogenic sources of $CH_4$ emissions and for the development of effective mitigation strategies. Methane production resulted by the anaerobic decomposition of organic compounds where $CO_2$ acts as inorganic electron acceptor. This process could be affected by the addition of rice straw, water management and rice variety itself. METHODS AND RESULTS: Rice (Oryza sativa L. Japonica type, var Samkwangbyeo) was cultivated in four plots: (1) Nitrogen-Phosphorus-Potassium (NPK) ($N-P_2O_5-K_2O$:90-45-57 kg/ha); (2) NPK plus 3 Mg/ha rice straw (RS3); (3) NPK plus 5 Mg/ha rice straw (RS5); (4) NPK plus 7 Mg/ha rice straw (RS7) for 3 years (2010-2012) and the rice straw incorporated in fall (Nov.) in Gyeonggi-do Hwaseong-si. Gas samples were collected using the closed static chamber which were installed in each treated plot of $152.9m^2$. According to application of 3, 5, 7 Mg/ha of rice straw, methane emission increased by 46, 101, 190%, respectively, compared to that of the NPK plot. CONCLUSION(S): We obtained a quantitative relationship between $CH_4$ emission and the amount of rice straw applied from rice fields which could be described by polynomial regression of order 2. The emission scaling factor estimated by the relationship were in the range of IPCC GPG (2000).

Change in Nitrogen Compounds of Fermented Fodder for Sea Cucumber during Three Step Fermentation on Sludge (고형오물을 이용한 해삼용 3단 발효사료 제조 중 질소 성분 변화)

  • Lee, Su-Jeong;Ko, Yu-Jin;Kim, Eun-Ja;Kang, Seok-Jung;Ryu, Chung-Ho
    • Journal of agriculture & life science
    • /
    • v.50 no.4
    • /
    • pp.147-155
    • /
    • 2016
  • This study presented a measure for turning by-products, released from land farming sites, into resources. The measure involved adding food by-products such as rice bran and nonfat soybean to the sludge, released from the eel farming sites, inoculating the lactic acid bacteria, Aspergillus oryzae, and Bacillus subtilis by step, fermenting them, and measuring the changed ingredients of the fermented fodder. The water content of the fermented fodder by the step of preparation was the first-step fermented product (14.6%) using the lactic acid bacteria, and the second and third-stage fermented product (33.0% and 34.0% respectively) using Aspergillus oryzae and Bacillus subtilis. The pH level was found to be 5.38 in the first-step fermented product due to the secretion of lactic acid caused by the lactic acid bacteria, and the pH level of the second and third-stage fermented products was 5.66 and 7.26, respectively, showing that the pH level increased. The phytic acid content was 0.126g/100g in the first-step fermented product, 0.004g/100g in the second-stage fermented product, and 0.093g/100g in the third-stage fermented product. The measurement of nitrogen content revealed that the amino nitrogen content was high with 1226.37mg% in the second-stage fermented product, and a little lower with 710.18mg% in the third-stage fermented product. The ammonium nitrogen content increased from 0.988mg/kg in the first-stage fermented product to 1.502mg/kg in the third-stage fermented product. Total nitrogen content increased to 2.78% in the first-stage fermented product, 4.08% in the second-stage fermented product, and 4.85% in the third-stage fermented product. As fermentation continued with the three microbes, the phytic acid decreased, and the protein decomposition rate increased. Also, due to the 3 step fermentation, the low-molecule nitrogen ingredient content increased, suggesting that the fodder was developed to offer high digestion and absorption.