• Title/Summary/Keyword: Co-swirl

Search Result 119, Processing Time 0.024 seconds

Experimental Study for NOx Reduction Using Reburning and Numerical Study with FLUENT (재연소를 이용한 NOx 저감의 실험적 연구 및 FLUENT를 이용한 수치적 연구)

  • Kim, Jae-Kwan;Kim, Hak-Young;Baek, Seung-Wook
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.1967-1972
    • /
    • 2008
  • Reburning is an efficient combustion technology to reduce nitrogen oxide by injecting hydro-carbon fuel to the downstream of the main combustion. In this paper LPG has been used not only as main fuel but also as reburn fuel and air was used as an oxidizer with 15kW swirl burner. Experimental studies have been done to evaluate effect of reburning for NOx reduction. Also to examine the effect of the amount of burnout air for complete combustion by reburn fuel on NOx reduction, test was conducted by reducing the amount of burnout air. Computational fluid dynamic (CFD) simulation was performed using the commercial CFD code FLUENT 6.3 to simulate experimental results and investigate the thermo-chemical characteristics. An evaluation of reaction models for swirl burner has been carried out for propane-air with two step finite-rate eddy-dissipation model in FLUENT.

  • PDF

Study of Design Optimization of Reverse-Annular Type Combustor for Small Gas Turbine Engine (선회형 보염구조의 환형 역류형 연소기 최적화)

  • Park, Hee-Ho;Kim, Ki-Tae;Sung, Ok-Seok;Lim, Byeung-Jun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.401-405
    • /
    • 2011
  • Although the APU combustors were developed successfully, it could face many unexpected hardships in a engine or a system operated under the severe environment. This study is to be verified and settled by experimently and analytically of the problems and issues occurred in a variety of engine and system operation tests.

  • PDF

The Effects of $CO_2$ on Heat Transfer from Hydrogen Oxygen-enriched Flame (이산화탄소가 수소 산소부화 화염의 열전달에 미치는 영향)

  • Lee, Chang-Yeop;Choi, Joon-Won;Baek, Seung-Wook
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.261-266
    • /
    • 2003
  • An experimental study has been conducted to evaluate the effects of $CO_{2}$ on heat transfer from hydrogen oxygen-enriched flame. Experiments were performed on flames stabilized by a co-flow swirl burner, which mounted on top of the furnace. Five composition conditions of oxidizer were chosen with replacing $N_{2}$ with $CO_{2}$. In a steady state, total and radiative heat flux rates from the flame to the wall of furnace has been measured using heat flux meters. Temperature distribution in furnace also has been checked. Increasing $CO_{2}$ ratio in the oxidizer, the dominant heat transfer mode was changed into convection from radiation. Temperature in the furnace decreased but total heat flux increased.

  • PDF

Effects of CO2 on Heat Transfer from Oxygen-Enriched Hydrogen Flame (이산화탄소가 수소 산소부화 화염의 열전달에 미치는 영향)

  • Lee, Chang-Yeop;Choi, Joon-Won;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.937-944
    • /
    • 2004
  • An experimental study has been conducted to evaluate the effects of $CO_2$ on heat transfer from oxygen-enriched hydrogen flame. Experiments were performed on flames stabilized by a co-flow swirl burner, which was mounted on top of the furnace. Five different oxidizer compositions were prepared by replacing $N_2$ with $CO_2$. In a steady state, the total as well as radiative heat flux from the flame to the wall of furnace have been measured using a heat flux meter. Temperature distribution in furnace also has been measured and compared. By increasing $CO_2$ proportion in the oxidizer, the convection played a more significant role rather than radiation. Overall temperature in the furnace was seen to be decreased, while the total heat flux has increased.

The influence of Flame holder design on Ion voltage and CO emission (보염기 형상이 이온전압과 배기배출물에 미치는 영향)

  • Wie, Jae-Hyug;Kim, Young-Soo;Yang, Dae-Bong;Kim, Yang-Ho;Jeong, Young-Ki;Ryu, Jeong-Wan;Lim, Jae-Beom;Chang, Young-June;Jeon, Chung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2186-2191
    • /
    • 2008
  • An experimental study was performed to investigate the effect of swirl condition and secondary air rate on the Ion voltage and CO emission characteristics. In this study, the combustion characteristics were investigated with the variation of swirler diameter, vane angle, suction air rate. The result of this study, the Ion voltage increase with increasing the diameter of the swirler. Additionally with increasing the suction air rate, the Ion voltage is the same. The CO concentration depends on suction air rate. In the other hand, it is almost unaffected by swirler's diameter. The flame length and Ion voltage decease with decreasing O2 percentage of surrounding air.

  • PDF

Effect of Oxygen Enrichment in a Swirling Diffusion Gas Burner (선회 확산버너에서 산소부화가 연소장에 미치는 영향)

  • Lee, Yong-Hoo;Lee, Jin-Seok;Lee, Woo-Seob;Lee, Do-Hyung
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.34-41
    • /
    • 2002
  • To investigate the combustion characteristics of a swirling diffusion gas burner with oxygen enrichment, mean temperature, CO, $CO_2$, and HC concentrations were measured at various oxygen enrichment conditions. According to the results, the flame temperature increased and the region of high temperature was expanded with increasing oxygen concentration. The $CO_2$ concentrations increased, while the CO concentrations decreased in proportion to the increase of oxygen concentration. On the other hand, the HC concentrations were decreased and this tendency was very strong at the downstream of the combustor.

  • PDF

Exhaust Emissions Characteristics on the SI Engine according to the Air-Fuel Mixture with Ozone (혼합기 오존 첨가에 따른 SI기관의 배기배출물 특성)

  • Lee, B.H.;Yi, C.S.;Lee, Y.H.;Lee, C.K.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.5-10
    • /
    • 2006
  • In a conventional and lean operating engine, the state of mixture is very important in the combustion and emission characteristics. Lean operation is known to decrease the formation while maintaining a good fuel economy, but the unstable operation due to misfire and erratic combustion prevents engines from being operated at very lean mixtures, so both combustion rates and exhaust emission formation need to be satisfied comparably. In this study, it is designed and experimented the modified engine, and analyzed the combustion and exhaust emission according to the change of engine speed and with adding ozone. The conclusions were drawn out and enumerated as follows. 1. At the experimental result of automobile diesel engine, it has been verified that the formation of particulate matter(PM) gas is able to be lower with the addition of optimum quantities of ozone. 2. Carbon monoxide(CO) was formed by the lack of oxygen and the thermal dissociation in the combustion process. Therefore, with the change of swirl valve's position and addition of oxygen and ozone, CO formation was decreased by the increasing of excessive O2, but it was increased by the temperature of combustion gas growing higher. As a result of the two effects, CO formation was decreased in this study. 3. Hydrocarbon(HC) was formed by the lack of O2, and the flow of mixture in cylinder. According to opening of the swirl valve and adding the oxygen and ozone, hydrocarbon gas was decreased by 20%, 9%, and 27.5%, respectively. 4. Nitric oxides($NO_x$) was strongly affected by the combustion gas temperature. As a result of respectively experimental conditions, $NO_x$ formation was increased about 20% due to (be the) high(er) combustion gas temperature.

  • PDF

Study on Lean-Premixed Combustion Characteristics of Dual-Stage Burner (이중 연료 분사구조를 갖는 희박-예혼합 버너의 연소특성 연구)

  • Jang, Jae Hwan;Cho, Ju Hyeong;Kim, Han Seok;Lee, Sang Min;Kim, Min Kuk;Ahn, Kook Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • This study aims to experimentally investigate the combustion characteristics of a lean premixed swirl-stabilized burner with dual-stage fuel injection arrays. The results show that a variation in the fuel distribution to fuel stages 1 (upstream) and 2 (downstream) produces a noticeable change in the NOx and CO emissions. Reducing the confined ratio, defined as the ratio of the nozzle exit diameter to the liner diameter, may reduce NOx and CO emissions owing to reduced combustion loading and longer residence time, respectively. A nozzle exit velocity of 30 m/s shows the optimum characteristics in terms of NOx and CO emissions and flame stability: increasing or decreasing the nozzle exit velocity leads to a degradation in emissions or flame stability, respectively.

Characteristics of NOx Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho, Eun-Seong;Chung, Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2303-2309
    • /
    • 2004
  • Flue gas recirculation (FGR) is a method widely adopted to control NOx in combustion system. The recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance a much improved reduction in NOx per unit mass of recirculated gas, as compared to the conventional FGR in air. In the present study, the effect of FGR/FIR methods on NOx reduction in turbulent swirl flames by using N$_2$ and CO$_2$ as diluent gases to simulate flue gases. Results show that CO$_2$ dilution is more effective in NO reduction because of large temperature drop due to the larger specific heat of CO$_2$ compared to N$_2$ and FIR is more effective to reduce NO emission than FGR when the same recirculation ratio of dilution gas is used.

A Study on the Formation Characteristics of NO, CO and THC with respect to the Structure of the Swirl Flame (선회화염 의 구조 에 따른 NO , CO 및 THC 생성특성 에 관한 연구)

  • 윤재건;명현국;신현동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.3
    • /
    • pp.210-216
    • /
    • 1984
  • An investigation of the effects of the size of mixing region determined by changing the position of fuel injection has been carried out. Measurements were made: the distribution of temperature and concentration profiles of the stable gas species, nitrogen oxide and total hydrocarbon in the flames. The results of this investigation show that variations of the size of mixing region produce major changes to the three type flow fields which significantly influence pollutant (NO, CO and THC) formation and energy release.