• Title/Summary/Keyword: Co-swirl

Search Result 119, Processing Time 0.02 seconds

Performance Estimation of Small Regenerative Radiant Tube Burner System using High Velocity Discharge (고속분사를 이용한 소형 축열식 복사관 버너시스템의 성능평가)

  • Cho, Han-Chang;Cho, Kil-Won;Lee, Yong-Kuk
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.242-247
    • /
    • 2004
  • An Experimental study was conducted on spray combustion using dual swirlers at different outlet angle; co-swirl and counter-swirl. To understand the characteristics of turbulent spray combustion of dual swirl flow (DSF), the axial helical annular vaned swirlers with various swirl ratios and combination of angle and direction were designed. and temperature measurements of a rapidly thermocouple insertion and measurements of soot volume fraction and microrstructure using thermophoretic sampling particle diagnostic (TSPD) as TEM were carried out. The NOx, $CO_2$, $O_2$, etc. was analyzed using emission gas analyzer. The results show that flame stability were maintained under very lean condition. for both co-swirl and counter-swirl case. And though Counter-swirl case kept the higher temperature region compared to co-swirl case, Counter-swirl combustion represented less NOx emission and soot formation than co-swirl case.

  • PDF

A Study on Combustion Characteristics of Turbulent Spray Flame by the Dual Swirler (2중스월류에 의한 난류분무화염의 연소특성 연구)

  • Lee, Kang-Yeop;Hwang, Sang-Soon
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.105-116
    • /
    • 2000
  • An Experimental study was conducted on spray combustion using dual swirlers at different outlet angle; co-swirl and counter-swirl. To understand the characteristics of turbulent spray combustion of dual swril flow(DSF), the axial helical annular vaned swirlers with various swirl ratios and combination of angle and direction were designed. and temperature measurements of a rapidly thermocouple insertion and measurements of soot volume fraction and microrstructure using thermophoretic sampling particle diagnostic(TSPD) as TEM were carried out. The NOx, $CO_2$,$O_2$, etc. was analyzed using emission gas analyzer. The results show that flame stability were maintained under very lean condition. for both co-swirl and counter-swirl case. And though Counter-swirl case kept the higher temperature region compared to co-swirl case, Counter-swirl combustion represented less NOx emission and soot formation than co-swirl case.

  • PDF

A Study on Combustion Characteristics of Turbulent Spray Flame by the Dual Swirler (2중스월류에 의한 난류분무화염의 연소특성 연구)

  • Lee, Kang-Yeop;Hwang, Sang-Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.67-79
    • /
    • 2000
  • An Experimental study was conducted on spray combustion using dual swirlers at different outlet angle; co-swirl and counter-swirl. To understand the characteristics of turbulent spray combustion of dual swril flow(DSF), the axial helical annular vaned swirlers with various swirl ratios and combination of angle and direction were designed. and temperature measurements of a rapidly thermocouple insertion and measurements of soot volume fraction and microstructure using thermophoretic sampling particle diagnostic(TSPD) as TEM were carried out. The NOx, $CO_2,\;O_2$, etc. was analyzed using emission gas analyzer. The results show that flame stability were maintained under very lean condition. for both co-swirl and counter-swirl case. And though Counter-swirl case kept the higher temperature region compared to co-swirl case, Counter-swirl combustion represented less NOx emission and soot formation than co-swirl case.

  • PDF

Interaction Between Partially Premixed and Premixed Swirl Flames in a Hybrid/Dual Swirl Jet Combustor (하이브리드/이중 선회제트 연소기에서 부분예혼합-예혼합 선회화염의 상호작용)

  • Jo, Joonik;Hwang, Cheol-Hong;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.7-8
    • /
    • 2012
  • The effects of interaction between partially premixed and premixed swirl flames on CO and NOx emissions were experimentally investigated using a hybrid/dual swirl jet combustor for a micro-gas turbine. Under the condition of constant angle ($45^{\circ}$) for outer swirl vane, the angle and direction of inner swirl vane installed for a partially premixed flame were varied as main parameters with a constant fuel flow rate for each nozzle. It was found that for all conditions, CO and NOx emissions were measured below 4 ppm and 15 ppm at 15% $O_2$, respectively, in a wide range of equivalence ratio (0.6~0.9). For co-swirl flows, CO emission increased dramatically as the angle of inner swirl vane increased from $15^{\circ}$ to $45^{\circ}$ near lean-flammability limit (i.e. equivalence ratio of 0.5). On the other hand, the case of swirl $angle=45^{\circ}$ provided the lowest NOx emission at higher equivalence ratios than 0.6. For counter-swirl flows, the case of swirl $angle=45^{\circ}$ extended the lean-flammability limit but higher NOx emissions were found compared to those of co-swirl flows. These results could be inferred by interaction between (inner) partially premixed and (outer) premixed swirl flames. However, these estimations were not clear yet because there was insufficient data on turbulent flow structure and fuel-air mixing in the present experimental approach.

  • PDF

The Effect of Swirl on the Structure of Concentric Laminar Jet Diffusion Flame (동축분류 층류제트 확산화염의 구조에 미치는 선회의 영향)

  • 김호영;민성기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.578-588
    • /
    • 1992
  • In order to predict the effect of swirl on the structure of concentric laminar jet diffusion flame, present study examined the effect of swirl on the flame characteristics by numerical numerical analysis through theoretical model. The theoretical model has been developed for the co-axial laminar jet flame such that the fuel and air are supplying with swirl through inner and outer co-axial tube respectively. For the parametric study, swirl number, Reynolds number of fuel and air and directions of swirl are chosen as important parametes. The results of study show that the flame with width and shorter length is formed by larger swirl number. The important factor of the flame shape is the recirculating zone formed around jet axis near the exit of nozzle. In case of weak swirl, the effect of directions of swirl is not appeared. However, for the strong swirl, the flame with shorter length are appeared in case of counter-swirl compared with the case of co-swirl.

Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part I: Experimental Study on Geometric Optimization) (마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part I: 형상 최적화를 위한 실험적 연구))

  • Park, Tae-Joon;Hwang, Cheol-Hong;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.199-200
    • /
    • 2012
  • An experimental study on geometric optimization was conducted to develop a hybrid/dual swirl jet combustor for a micro-gas turbine. A hybrid concept indicating a combination of swirling jet partially premixed and premixed flames were adopted to achieve high flame stability as well as clean combustion. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with a constant fuel flow rate for each nozzle. The results showed that the variation in location of pilot nozzle resulted in significant change in swirl intensity due to the change in flow area near burner exit, and thus, optimized nozzle location was determined on the basis of CO and NOx emissions under conditions of co-swirl flow and swirl $angle=30^{\circ}$. The increase in swirl angle (from $30^{\circ}$ to $45^{\circ}$) enhanced the emission performances, in particular, with a significant reduction of CO emission near lean-flammability limit. It was observed that the CO emission near lean-flammability limit was further reduced through the counter-swirl flow. However, there was not significant change in the NOx emission in the operating conditions (i.e. equivalence ratio of 0.6~0.7) between the co- and the counter-swirl flow.

  • PDF

Effect of Swirl Angles in Low-Swirl Combustor (저선회 연소기의 선회각도에 따른 영향)

  • Jeong, Hwanghui;Choi, Inchan;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.123-125
    • /
    • 2015
  • A study has been conducted to investigate the effect of swirl angle in low swirl combustor. In this study, the employed swirl angles were $28^{\circ}$, $32^{\circ}$ and $37^{\circ}$. Direct flame photos show that the width of the flame is expanded and the length of the flame is shortened when swirl angle is increased. Also, as the swirl angle was increased, the flame stability region could be widened due to the expansion of lower flammable limit. Between 3 and 7kW, CO emissions was below 10 ppm and NOx emissions was also below 27 ppm at $O_2$ 15% basis over the lean burning range of 0.6 < ${\Phi}$ < 0.9. From this investigation of stability expansion effect and emission performance, it was identified that the swirl angle $37^{\circ}$ is most suitable swirling condition in the low swirl model combustor.

  • PDF

Design Technique of Post Swirl Stator in Container Vessels by CFD (CFD를 이용한 컨테이너선의 Post Swirl Stator 설계기법)

  • Kim, Ki-Hyun;Song, In-Haeng;Choi, Soon-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.93-100
    • /
    • 2007
  • Post swirl stator is an energy saving device to recover rotational energy of the propeller. To optimize the performance of post swirl stator in container vessels, computational fluid dynamics using body force method was introduced. A commercial code Fluent was used in conjunction with body force distributed on the surface of actuator disk which is located in the propeller plane to optimize pitch angle of the post swirl stator blade. This study showed that CFD is an important tool to simulate flow behind ship with propeller, rudder and post swirl stator.

Influence of Fuel Swirl Flow on NOx Emission in Swirl Combustor (스월연소기에서 연료스월유동이 NOx 배출에 미치는 영향)

  • Cho, Jin-Woo;Whang, Sang-Ho;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.70-75
    • /
    • 2005
  • In this study, experimental investigations were conducted on NOx emission characteristics with fuel swirl flow in swirl combustor. Many types of vanes, which altered air and fuel swirl angles, were employed to verify the mixing processes. For strong air swirl, fuel counter-swirl resulted in relatively large turbulent intensity, high energy to the high frequency region and narrow width of high temperature region compared with co-swirl condition. These effects of fuel counter-swirl resulted in low NOx emission characteristics at strong air swirl condition. And NOx reduction mechanism was also discussed.

Syngas-Oxygen Combustion Characteristics of a Swirl-Stabilized Premixed Flame (합성가스-순산소 예혼합 화염의 연소특성)

  • Cho, Ju-Hyeong;Park, Jun-Hong;Jeon, Choong-Hwan;Ahn, Koo-Kyoung;Kim, Han-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.561-569
    • /
    • 2010
  • The present study deals with experimental investigations on the syngas-oxygen combustion characteristics of a swirl-stabilized premixed flame in a 10 kW combustor. The effect of hydrogen in syngas has been investigated with different swirl angles to identify the role of hydrogen and swirl strength on the flame stability and CO emissions. The results show that hydrogen addition extended the blowout limit while narrowing the flashback limit. The dependence of blowout on the swirl angle is negligible while the dependence of flashback on the swirl angle is evidenced by two regimes depending on the amount of hydrogen. CO emission is decreased with increasing excess $O_2$ supply or increasing hydrogen content. Chemiluminescence diagnostics is utilized to provide information on the structure of a swirl-stabilized premixed flame. The OH chemiluminescence intensity is more concentrated near the burner exit with an increase in the hydrogen content, which results from high reactivity of hydrogen.