• Title/Summary/Keyword: Co-sintering

Search Result 834, Processing Time 0.041 seconds

A Study of Ceria on Low-temperature Sintering Using Sintering Aids for Solid Oxide Fuel Cells (소결 조제를 이용한 고체산화물 연료전지용 세리아 전해질의 저온소결 특성 연구)

  • Oh, Chang Hoon;Song, Kwang Ho;Han, Jonghee;Yoon, Sung Pil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.280-288
    • /
    • 2014
  • SDC (Samarium doped Ceria) electrolyte was developed for Intermediate temperature SOFC ($500^{\circ}C-800^{\circ}C$) which showed a good electrical conductivity. In this study, we used sintering aids to reduce the SDC sintering temperature down to $1000^{\circ}C$, especially which can help the SOFC scale-up. In order to reduce the SDC sintering temperature, $Li_2CO_3$ and $TiO_2$ were used as a sinering aids for decreasing sintering temperature. $Li_2CO_3$ and $TiO_2$ doped SDC sintered at $1000^{\circ}C$ showed 99% of the theoretical density and higher electrical conductivity than the pure SDC sintered at $1500^{\circ}C$. When measuring the OCV (Open circuit voltage) with the $Li_2CO_3$ and $TiO_2$ doped SDC electrolyte, however, the OCV values were lower than the theoretical OCV values which means that the modified SDC still had electronic conductivity.

Co-firing of Solid Oxide Fuel Cell Using Pore Former (기공전구체를 이용한 고체전해질 연료전지의 동시소성 연구)

  • 문지웅;이홍림;김구대;김재동;이해원
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.3
    • /
    • pp.273-279
    • /
    • 1998
  • Unite cell of soid oxide fuel cell (SOFC) that consists of a dense yttria-stabilized zirconia(YSZ) electrolyte a porous nickel-YSZ cermet anode and a porous strontium- doped lanthanum manganate(LSM) cathod was fabricated from using pore former through co-firing technique. Initial sintering shrinkage rates of each layer were identified for fabricating SOFC. Heterogenous sintering was very effective in tailoring shrinkage rate for three layers. The powder tailoring necessary for shrinkage rate matching are as follows ; electrolyte of 60% TZ8YS/ 40% TZ8Y mixture anode of 51wt% NiO/49 wt% (70wt% TZ8YS/30 wt% UT ZrO2) mixture and cathode of 80% LSM/20% UT ZrO2 mixture . The overall sintering shrinkage rate differences of three layers using these compositions were maintained in a few percent.

  • PDF

Microstructure Evolution in the Layered (WC-Co)/Fe Powder Compacts with a Composition Gradient during Vacuum Sintering (농도기울기를 갖는 초경합금/철 혼합분말 성형체의 진공소결시의 미세조직 변화)

  • 양성철
    • Journal of Powder Materials
    • /
    • v.3 no.4
    • /
    • pp.266-270
    • /
    • 1996
  • The microstructure evolution during sintering of a compact being composed of three layers of (WC-15%Co)/Fe powder mixture with different Fe contents has been observed. The Fe contents in the respective (WC-15%Co)/Fe layers were varied by 20%. 50%, and 90% in sequence by volume from a top layer to a bot- tom layer. The sintering temperatures and times were varied from 110$0^{\circ}C$ to 125$0^{\circ}C$ and from 1 h to 4 h, The compact layer was not densified below 120$0^{\circ}C$ in 4 h. Appropriate sintering temperature and time conditions for making a multi-layered hard metal compact were determined as 125$0^{\circ}C$ and 3 h, respectively.

  • PDF

Metal Injection Molding Process of $Mo_2FeB_2$ Boride Base Cermets

  • Tashiro, Hirofumi;Hirata, Kourou;Yamasaki, Yuji;Takagi, Ken-ichi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.765-766
    • /
    • 2006
  • [ $Mo_2FeB_2$ ] boride base cermets produced by a novel sintering technique, called reaction boronizing sintering through a liquid phase, have excellent mechanical properties and wear and corrosion-resistances. Hence, the cermets are applied to the injection molding die-casting machine parts and so on. We investigated that the effect of deoxidization and sintering temperature on mechanical properties and deformation of the MIM processed cermets. As a result, deoxidization temperature of 1323K and sintering temperature of 1518K were suitable. The MIM products of the cermets showed allowable dimensional accuracy and the same mechanical properties as the press-sintered ones.

  • PDF

Mechanical Properties and Consolidation of Ultra-Fine WC-10Co and WC-10Fe Hard Materials by Rapid Sintering Process (급속 소결 공정에 의한 초미립 WC-10Co와 WC-10Fe 초경재료 제조와 기계적 성질)

  • Jeong, In Kyoon;Park, Jung-Hwan;Doh, Jung-Mann;Kim, Ki-Youl;Woo, Kee-Do;Ko, In-Young;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.223-226
    • /
    • 2008
  • The comparison of sintering behavior and mechanical properties of ultra-fine WC-10wt.%Co and WC-10wt.%Fe hard materials produced by high-frequency induction heated sintering (HFIHS) was accomplished using ultra fine powder of WC and binders(Co, Fe). The advantage of this process allows very quick densification to near theoretical density and prohibition of grain growth in nano-structured materials. Highly dense WC-10Co and WC-10Fe with a relative density of up to 99% could be obtained with simultaneous application of 60 MPa pressure and induced current within 1 minute without significant change in grain size. The hardness and fracture toughness of the dense WC-10Co and WC-10Fe composites produced by HFIHS were investigated.

Fabrication and Mechanical Properties of WC-Mo2C-Co Hard Materials by the Pulsed Current Activated Sintering Method (펄스 전류 활성 소결법을 이용한 WC-Mo2C-Co 소결체 제조 및 기계적 특성 평가)

  • Youn, Hee-Jun;Bang, Han-Sur;Bang, Hee-Seon;Oh, Ik-Hyun;Park, Hyun-Kuk
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.921-929
    • /
    • 2012
  • The pulsed current activated sintering method (PCAS) is a new rapid sintering method that was developed recently for fabricating ceramics and composites. This method combines a high temperature for a short time with pressure application. In this work, PCAS was used to fabricate $WC-5wt%Mo_2C-5wt%$ Co hard material using WC, $Mo_2C$, and Co. The $WC-Mo_2C-Co$ was almost completely dense with a relative density of up to 100% after the simultaneous application of a pressure of 60 MPa and electric current for 11 min without grain growth. The average grain size of WC that was produced through PCAS was about $0.5-0.6{\mu}m$. The vickers hardness and fracture toughness of the $WC-5wt%Mo_2C-5wt%$Co hard materials were about $2453.5kg/mm^2$ and $7.9MPa{\cdot}m^{1/2}$, respectively, for 60 MPa at $11200^{\circ}C$.

Microwave Sintering of WC-Co Hard Metals (WC-Co 초경합금의 마이크로파 소결)

  • 송강석;김석범
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.249-254
    • /
    • 2003
  • WC-6wt%Co hard metal powders were sintered by a 2.45 GHz multimode microwave applicator in Ar atmosphere. Microwave sintering of WC-6wt%Co powder lowered the sintering temperature and shortened the processing time in less than two hours than by a conventional method. Microstructures of the sintered specimen were studied with scanning electron microscope (SEM) and no abnormal grain growth was observed. Mechanical properties were similar to the values of the specimens sintered by a conventional method. Specimen sintered at 135$0^{\circ}C$ for 30 minutes ,hewed 99%, 20.5 GPa and 8.1 MPa$\sqrt{m}$ of theoretical density, hardness and fracture strength, respectively.

Microwave Dielectric Properties of Low-temperature Sintered $MgCo_2(VO_4)_2$ Ceramics Synthesized by Sol-Gel process (졸-겔 공정에 의해 제조된 저온소결 $MgCo_2(VO_4)_2$ 세라믹스의 마이크로파 유전특성)

  • Lee, Ji-Hun;Bang, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.288-289
    • /
    • 2006
  • We studied the effect of sol-gel processing and sintering temperature on the microwave properties of $MgCo_2(VO_4)_2$ system(MCV) which is applicable to LTCC(low-temperature cofired ceramics). The MCV was synthesized by sol-gel process using solution that contains precursor molecules for Mg, Co, and V. SEM analysis shows that the average particle size is ${\sim}1{\mu}m$ and size distribution is very uniform compared to the one prepared by conventional solid-state reaction process. Highly dense samples were obtained at the sintering temperature range of $750^{\circ}C{\sim}930^{\circ}C$. The maximum $Q{\times}f_0$ value of 55,700GHz, dielectric constant(${\varepsilon}_r$) of 10.41 and temperature coefficient(${\tau}_f$) of $-85ppm/^{\circ}C$ was obtained at the sintering temperature of $930^{\circ}C$. The superior microwave properties of sol-gel processed MCV relative to conventional solid-state reaction processed one is remarkable especially at lower sintering temperatures such as $750^{\circ}C$ and $800^{\circ}C$.

  • PDF

Effects of Co-Ti Addition on the Sintering Characteristics of (Ti1-xAlx)N Ntride Powder ((Ti1-xAlx)N계 질화물의 소결특성에 미치는 Co, Co-Ti 금속결합제의 영향)

  • Lee, Young-Ki;Sohn, Young-Un
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.3
    • /
    • pp.177-185
    • /
    • 1998
  • The purpose of this research is to investigate the effects of Co, Co-Ti addition on the sintering characteristic of $(Ti_{1-x}Alx)N$ material synthesized by the direct nitriding method for a application as a cermet material. The observed shrinkage rates of $(Ti_{1-x}Alx)N$ pellets increase with the additive (Co, Co-Ti) content, temperature and time, and also the pellets with the same additive content exhibit the shrinkage behavior that depends on the Ti/Al ratio. However, although the shrinkage rates in this study is the mast higher (36%), the density of the sintered $(Ti_{1-x}Alx)N$ pellet is below 80% density in theory because of the partial segregation and the dense band defect of AlCo compound. Consequentely, it is considered that Co was not effective as a binder material because the wettability of liquid Co metal on $(Ti_{1-x}Alx)N$ materials is poor, In $(Ti_{1-x}Alx)N$ with Ti-Co additive, the stoichiometric TiN is transformed by the under-stoichiometric TiNx(x<1.0) during sintering, leading to the good properties such as hardnees and hot oxidation.

  • PDF

Influence of laminating and sintering condition on permittivity and shrinkage during LTCC process (LTCC 공정 중 적층 및 소결이 유전율과 회로 형상에 미치는 영향)

  • Jeong, M.S.;Hwang, S.H.;Chung, H.W.;Rhim, H.S.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.67-70
    • /
    • 2007
  • LTCC (Low Temperature Co-fired Ceramic) has been emerged as a promising technology in packaging industry. In this technology the lamination and the sintering process are very important because they change the permittivity of ceramics and the dimension of metal pattern which have influences on electric property. In this paper we studied on influence of the permittivity and the dimension change by lamination pressure and sintering temperature of LTCC process. As a results, permittivity increase along with increasing of lamination pressure and sintering temperature.

  • PDF