• Title/Summary/Keyword: Co-precipitation

Search Result 933, Processing Time 0.024 seconds

A Monitoring for the Management of Microbiological Hazard in Rice-cake by Climate Change (기후변화에 따른 떡류의 미생물학적 위해관리를 위한 권역별 모니터링)

  • Choi, Song-Yi;Jeong, Se-Hee;Jeong, Myung-Seop;Park, Ki-Hwan;Jeong, Young-Gil;Cho, Joon-Il;Lee, Soon-Ho;Hwang, In-Gyun;Bahk, Gyung-Jin;Oh, Deog-Hwan;Chun, Hyang-Sook;Ha, Sang-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.3
    • /
    • pp.301-305
    • /
    • 2012
  • This study was conducted to investigate the microbiological contamination levels in rice cakes and rice flour due to climate change in three areas classified to their temperature and precipitation. We investigated the contamination levels of total aerobic bacteria, coliforms, Escherichia coli, Bacillus cereus, Staphylococcus aureus, Clostridium perfringens of rice flour and 3 rice cakes such as Garaetteok, Sirutteok and Gyeongdan. Contamination levels of total aerobic bacteria in rice flour were 4.9 log CFU/g. In a total of 70 rice flour, yeasts & molds and coliforms were detected in 42 and 52 samples at the levels of 43 CFU/g and 1.29 log CFU/g, respectively. S. aureus were detected in only 1 rice flour (1.66 log CFU/g) out of 70. In an investigation of contamination levels in rice cakes, the population of total aerobic bacteria were highest in Gyeongdan (5.18 log CFU/g) and coliforms were highest in Gareattock (2.93 log CFU/g). There was no detection of E. coli and B. cereus except for only 1 Gareattock (1.20 log CFU/g). There were no differences of contamination levels among the three areas. If constant monitoring of rice cakes and rice flour is conducted on the basis of this study, it is expected to be able to analyze the change of contamination levels in rice cakes and rice flour due to climate change.

Chemical and Spectroscopic Characterization of Peat Moss and Its Different Humic Fractions (Humin, Humic Acid and Fulvic Acid) (피트모스에서 추출한 휴믹물질(휴믹산, 풀빅산, 휴민)의 화학적 및 분광학적 물질특성 규명)

  • Lee Chang-Hoon;Shin Hyun-Sang;Kang Ki-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.42-51
    • /
    • 2004
  • Peat humin(p-Humin), humic acid(p-HA) and fulvic acid(p-FA) were isolated from Canadian Sphagnum peat moss by dissolution in 0.1M NaOH followed by acid precipitation. After purification cycles, they are characterized for their elemental compositions and, acid/base properties. Functionalities and carbon structures of the humic fractions were also characterized using FT-IR and solid state $^{13}C$-NMR spectroscopy. Those results are compared with one another and with soil humic substances from literatures. Main purpose of this study was to present a chemical and spectroscopic characterization data of humic substance from peat moss needed to evaluate its environmental applicability. The relative proportions of the p-Humin, p-HA and p-FA in the peat moss was $76\%,\;18\%,\;and\;3\%$, respectively, based on the total organic matter content ($957{\pm}32\;g/kg$). Elemental composition of p-Humin were found to be $C_{1.00}H_{1.52}O_{0.79}N_{0.01}$ and had higher H/C and (N+O)/C ratio compared to those of p-HA($C_{1.00}H_{1.09}O_{0.51}N_{0.02}$) and p-FA($C_{1.00}H_{1.08}O_{0.65}N_{0.01}$). Based on the analysis of pH titration data, there are two different types of acidic functional groups in the peat moss and its humic fractions and their proton exchange capacities(PEC, meq/g) were in the order p-FA(4.91) >p-HA(4.09) >p-Humin(2.38). IR spectroscopic results showed that the functionalities of the peat moss humic molecules are similar to those of soil humic substances, and carboxylic acid(-COOH) is main function group providing metal binding sites for Cd(II) sorption. Spectral features obtained from $^{13}C$-NMR indicated that peat moss humic molecules have rather lower degree of humification, and that important structural differences exist between p-Humin and soluble humic fractions(p-HA and p-FA).

Assessment of water supply reliability in the Geum River Basin using univariate climate response functions: a case study for changing instreamflow managements (단변량 기후반응함수를 이용한 금강수계 이수안전도 평가: 하천유지유량 관리 변화를 고려한 사례연구)

  • Kim, Daeha;Choi, Si Jung;Jang, Su Hyung;Kang, Dae Hu
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.993-1003
    • /
    • 2023
  • Due to the increasing greenhouse gas emissions, the global mean temperature has risen by 1.1℃ compared to pre-industrial levels, and significant changes are expected in functioning of water supply systems. In this study, we assessed impacts of climate change and instreamflow management on water supply reliability in the Geum River basin, Korea. We proposed univariate climate response functions, where mean precipitation and potential evaporation were coupled as an explanatory variable, to assess impacts of climate stress on multiple water supply reliabilities. To this end, natural streamflows were generated in the 19 sub-basins with the conceptual GR6J model. Then, the simulated streamflows were input into the Water Evaluation And Planning (WEAP) model. The dynamic optimization by WEAP allowed us to assess water supply reliability against the 2020 water demand projections. Results showed that when minimizing the water shortage of the entire river basin under the 1991-2020 climate, water supply reliability was lowest in the Bocheongcheon among the sub-basins. In a scenario where the priority of instreamflow maintenance is adjusted to be the same as municipal and industrial water use, water supply reliability in the Bocheongcheon, Chogang, and Nonsancheon sub-basins significantly decreased. The stress tests with 325 sets of climate perturbations showed that water supply reliability in the three sub-basins considerably decreased under all the climate stresses, while the sub-basins connected to large infrastructures did not change significantly. When using the 2021-2050 climate projections with the stress test results, water supply reliability in the Geum River basin was expected to generally improve, but if the priority of instreamflow maintenance is increased, water shortage is expected to worsen in geographically isolated sub-basins. Here, we suggest that the climate response function can be established by a single explanatory variable to assess climate change impacts of many sub-basin's performance simultaneously.