• 제목/요약/키워드: Co-polymer

검색결과 1,925건 처리시간 0.023초

전기 방사법을 이용한 플레이크형 LiCoO2 나노 분말의 제조 (Fabrication of Flake-like LiCoO2 Nanopowders using Electrospinning)

  • 구본율;안건형;안효진
    • 한국분말재료학회지
    • /
    • 제21권2호
    • /
    • pp.108-113
    • /
    • 2014
  • Flake-like $LiCoO_2$ nanopowders were fabricated using electrospinning. To investigate their formation mechanism, field-emssion scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were carried out. Among various parameters of electrospinning, we controlled the molar concentration of the precursor and the PVP polymer. When the molar concentration of lithium and cobalt was 0.45 M, the morphology of $LiCoO_2$ nanopowders was irregular and round. For 1.27 M molar concentration, the $LiCoO_2$ nanopowders formed with flake-like morphology. For the PVP polymer, the molar concentration was set to 0.011 mM, 0.026 mM, and 0.043 mM. Irregular $LiCoO_2$ nanopowders were formed at low concentration (0.011 mM), while flake-like $LiCoO_2$ were formed at high concentration (0.026 mM and 0.043 mM). Thus, optimized molar concentration of the precursor and the PVP polymer may be related to the successful formation of flake-like $LiCoO_2$ nanopowders. As a results, the synthesized $LiCoO_2$ nanopowder can be used as the electrode material of Li-ion batteries.

고성능 리튬 이온전지를 위한 폴리머-세라믹 복합 겔 고분자 전해질 (Polymer-Ceramic Composite Gel Polymer Electrolyte for High-Electrochemical-Performance Lithium-Ion Batteries)

  • 장소현;김재광
    • 전기화학회지
    • /
    • 제19권4호
    • /
    • pp.123-128
    • /
    • 2016
  • 본 연구에서는 poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP)를 나노 크기의 $Al_2O_3$ 세라믹입자와 혼합하여 전기방사법으로 복합 겔 고분자 전해질을 제조하였다. $Al_2O_3$ 세라믹입자를 혼합한 복합 겔 고분자 전해질의 이온전도도는 $9.5{\times}10^{-2}Scm^{-1}$로, 순수한 PVdF-HFP 겔 고분자 전해질보다 높은 이온전도도를 나타내며 전기화학적 안정성도 5.2 V까지 개선하였다. 전기화학적 성능을 분석하기 위해서 $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (NMC)양극과 함께 전지로 제작되었으며 순수 겔 고분자 전해질과 복합 겔 고분자 전해질 셀은 0.1C-rate에서 각각 $168.2mAh\;g^{-1}$$189.6mAh\;g^{-1}$의 방전 용량을 가지며 우수한 수명 특성을 보여 주었다. 따라서 고유전율 세라믹 입자의 복합화는 리튬 이온 겔 고분자 전지의 안정성과 전기화학적 특성을 향상시키는 좋은 대안이 될 것으로 판단된다.

Preparation and Antitumor Activities of Poly(polyethylene glycol methacrylate-co-methacryloyloxymethyl-5-fluorouracil) Prodrug

  • Cho, Suk-Hyung;Kim, Kong-Soo
    • Macromolecular Research
    • /
    • 제11권5호
    • /
    • pp.317-321
    • /
    • 2003
  • In order to prepare a prodrug, poly(polyethylene glycol methacrylate-co-methacryloyloxymethyl-5-fluorouracil) (poly(PEGM-co-MAOFU)) prodrug particles were prepared by precipitation polymerization of MAOFU and PEGM in polyacrylic acid solution. The size of prodrug particles were 0.2-0.35 ${\mu}{\textrm}{m}$. The antitumor activity of prodrugs against sarcoma-l80 tumor cell in mice was demonstrated and the polymer particles themselves showed low toxicity and good biocompatibility when they were administrated into mice.

고분자물질(高分子物質) 첨가(添加)에 따른 마찰저항감소(摩擦抵抗減少)에 관한 연구(硏究) (A Study on the Drag Reduction with Polymer Additives)

  • 김재근;차경옥;최형진;김종보
    • 설비공학논문집
    • /
    • 제8권2호
    • /
    • pp.198-207
    • /
    • 1996
  • It is well known that drag reduction in single phase liquid flow is affected by polymer material, molecular weight, polymer concentration, pipe diameter, and flow velocity. Drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to present cavitation which occurs in pump impellers. But the research of drag reduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction, mean liquid velocity, and turbulent intensity whether polymer is added in the horizontal two phase system or not. Experiment has been conducted in a test section with the inner diameter of 24mm and the length of 1,500mm. The polymer materials used are two kinds of polyacrylamide[PAAM] and co-polymer[A611P]. The polymer concentration was varied with 50, 100 and 200 ppm under the same experimental conditions. Experimental results showed that the drag reduction of co-polymer is higher than that of polyacrylamide. Mean liquid velocities increased as polymer was added, and turbulent intensity decreased inversely near the pipe wall.

  • PDF

Poly(butylene adipate-co-succinate)/Thermoplastic Starch 블렌드의 물성과 발포특성 (Physical Properties and Foaming Characteristics of Poly(butylene adipate-co-succi nate)/Thermoplastic Starch Blends)

  • 김상우;박준현;김대진;임학상;서관호
    • 폴리머
    • /
    • 제29권6호
    • /
    • pp.557-564
    • /
    • 2005
  • 전분을 가소화시킨 thermoplastic starch(TPS)를 제조하고 이를 생분해성 지방족 폴리에스테르의 하나인 poly (butylene adipate-co-succinate) (PBAS)와 블렌드하였다. TPS의 조성 및 함량이 PBAS의 기계적 물성과 열적 성질 및 생분해도에 미치는 영향과 PBAS/TPS 블렌드의 발포특성을 관찰하였다. 소량의 TPS가 첨가됨에 따라 PBAS/TPS 블렌드의 인장강도,신장률 및 인열강도는 급격히 저하되다가 함량이 증가할수록 감소폭이 둔화되는 경향을 보였다. TPS는 PBAS 블렌드의 결정화도와 열분해온도를 낮추었다. PBAS/TPS 블렌드에서 TPS의 함량이 20 phr일 때 최고의 발포배율을 가지는 발포체가 얻어졌으며,TPS 함량이 증가할수록 발포 배율은 낮아졌다.

Synthesis and Characterization of H3PO4 Doped Poly(benzimidazole-co-benzoxazole) Membranes for High Temperature Polymer Electrolyte Fuel Cells

  • Lee, Hye-Jin;Lee, Dong-Hoon;Henkensmeier, Dirk;Jang, Jong-Hyun;Cho, Eun-Ae;Kim, Hyoung-Juhn;Kim, Hwa-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3279-3284
    • /
    • 2012
  • Poly(benzimidazole-co-benzoxazole)s (PBI-co-PBO) are synthesized by polycondensation reaction with 3,3'-diaminobenzidine, terephthalic acid and 3,3'-dihydroxybenzidine or 4,6-diaminoresorcinol in polyphosphoric acid (PPA). All polymer membranes are prepared by the direct casting method (in-situ fabrication). The introduction of benzoxazole units (BO units) into a polymer backbone lowers the basic property and $H_3PO_4$ doping level of the copolymer membranes, resulting in the improvement of mechanical strength. The proton conductivity of $H_3PO_4$ doped PBI-co-PBO membranes decrease as a result of adding amounts of BO units. The maximum tensile strength reaches 4.1 MPa with a 10% molar ratio of BO units in the copolymer. As a result, the $H_3PO_4$ doped PBI-co-PBO membranes could be utilized as alternative proton exchange membranes in high temperature polymer electrolyte fuel cells.