• Title/Summary/Keyword: Co-polymer

Search Result 1,924, Processing Time 0.033 seconds

Fabrication and Characteristics of Hetero-junction EL Devices Containing Electron Transport Layer and PPV as Emitting Layer (PPV 발광층 및 전자 수송층을 가진 이종 접합구조 EL 소자의 제작 및 특성)

  • Park, Lee Soon;Han, Yoon Soo;Kim, Sung Jin;Shin, Dong Soo;Shin, Won Gi;Kim, Woo Young;Lee, Choong Hun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.710-714
    • /
    • 1998
  • Organic electroluminescence devices (ELD) with hetero-junction structure were fabricated utilizing poly(p-phenylne vinylene) (PPV) as emitting layer and electron transport layer (ETL). 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) was used as an electron transport agent. Copolymers with stilbene type comonomers, such as poly(styrene-co-PVTS), poly(styrene-co-MeO-PVTS) and poly(styrene-co-MeO-ST) were synthesized to be used as a matrix polymer to disperse electron transport agent (PBD). Among the hetero-junction EL devices fabricated with the above materials, the device with poly(styrene-co-PVTS) as matrix polymer for ETL gave the highest luminance ($120.7cd/m^2$, 13 V). EL devices made with poly(styrene-co-MeO-PVTS) or poly(styrene-co-MeO-ST) matrix exhibited lower luminance than the one with polystyrene matrix and the single layer EL (ITO/PPV/Mg) device.

  • PDF

Yttrium-doped and Conductive Polymer-Coated High Nickel Layered Cathode Material with Enhanced Structural Stability

  • Shin, Ji-Woong;Lee, Seon-Jin;Nam, Yun-Chae;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.272-278
    • /
    • 2021
  • In this study, high nickel layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries were modified by yttrium doping and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) coating. The effects of yttrium doping and PEDOT:PSS coating on the structural and electrochemical properties of the LiNi0.8Co0.1Mn0.1O2 cathode material were investigated and compared. The substitution of nickel with an electrochemically inert yttrium was confirmed to be successful in stabilizing the layered structure framework. Moreover, coating the surfaces of the LiNi0.8Co0.1Mn0.1O2 particles with a conductive polymer, PEDOT:PSS, improved the capacity retention, thermal stability, and impedance of the cathode material by increasing its ionic and electric conductivities.

Laser Assisted Lift-Off Process as a Organic Patterning Methodology for Organic Thin-Film Transistors Fabrication

  • Kim, Sung-Jin;Ahn, Taek;Suh, Min-Chul;Mo, Yeon-Gon;Chung, Ho-Kyoon;Bae, Jin-Hyuk;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1154-1157
    • /
    • 2006
  • Organic thin-film transistors (OTFTs) based on a semiconducting polymer have been fabricated using an organic patterning methodology. Laser assisted lift-off (LALO) technique, ablating selectively the hydrophobic layer by an excimer laser, was used for producing a semiconducting polymer channel in the OTFT with high resolution. The selective wettability of a semiconducting polymer, poly (9-9-dioctylfluorene-co-bithiophene) (F8T2), dissolved in a polar solvent was found to define precisely the pattering resolution of the active channel. It is demonstrated that in the F8T2 TFTs fabricated using the LALO technique and is applicable for the larger area display.

  • PDF

Foaming of Poly(butylene succinate) with Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 Poly(butylene succinate) 발포)

  • Son, Jae-Myoung;Song, Kwon-Bin;Kang, Byong-Wook;Lee, Kwang-Hee
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • The foaming of poly(butylene succinate) (PBS) using supercritical $CO_2(scCO_2)$ was studied. In order to improve the melt strength, PBS was modified using the reactive compounding technique. Rapid decompression of $scCO_2$-saturated PBS at a temperature above the depressed $T_m$ yielded expanded microcellular foams. The resulting foam structure could be controlled by manipulating process conditions. Experiments varying the foaming temperature while holding other variables constant showed that higher temperatures produced larger cells and reduced cell densities. Higher saturated pressures led to higher nucleation densities and smaller cell sizes. Decreasing the rate of depressurization permitted a longer period of cell growth and therefore larger cells were obtained.