• Title/Summary/Keyword: Co-polymer

Search Result 1,925, Processing Time 0.026 seconds

Optical and Mechanical Properties of Styrene/Butyl Acrylate/Methyl Methacrylate Terpolymers (스티렌/부틸아크릴레이트/메틸메타아크릴레이트 삼원 공중합체의 투명성 및 기계적 물성)

  • Jang, Sang Jin;Park, Hae Youn;Seo, Kwan Ho
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.191-199
    • /
    • 2015
  • In order to improve the low impact resistance of polystyrene without harming its transparency the styrene monomer was copolymerized with transparent butyl acrylate (BA), and methylmethacrylate (MMA) to obtained a poly(styrene-co-butylacrylate) P(SM-co-BA) and a terpolymer copolymer P(SM-co-BA-co-MMA). The polymers were then cross-linked with the aid of a cross-linking agent dicumylperoxide (DCP), and their mechanical and optical properties were tested. It was found that the contents of monomers and DCP affect the mechanical, thermal, and optical properties of the polymers. An increase in BA contents in P(SM-co-BA) and P(SM-BA-MMA) improved the mechanical strength, but the optical properties remained the same with some exception for P(SM-co-BA). An increase in the DCP contents improved the mechanical but found losses in the optical properties.

Fabrication and Characterization of Modified Poly(2-hydroxyethyl methacrylate)(PHEMA) Hydrogels by Thermal/Photo Polymerization

  • Lee, Minsu;Lee, Junghyun;Jang, Jihye;Nah, Changwoon;Huh, Yang-il
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.359-367
    • /
    • 2019
  • Poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels modified with various co-monomers, such as N-vinyl pyrrolidone (NVP), glycidyl methacrylate (GMA), and glycerol monomethacrylate (GMMA), were prepared to investigate the effect of adding a co-monomer on the water contents, surface wettability, and tensile modulus. These polymers were synthesized by thermal- and photo-polymerization in the presence of azobisisobutyronitrile (AIBN) and diphenyl(2,4,6-trimethylbenzoyl)-phosphineoxide (TPO) as the initiators. The characteristics of the hydrogels were analyzed via FTIR and UV/Vis spectroscopies, contact angle measurements, and tensile modulus measurements with UTM. Regarding the properties of water in the hydrogels, the ratio between free to bound water was investigated using differential scanning calorimetry (DSC). The effects of adding the co-monomers on the water content, surface wettability, and tensile modulus for soft contact lenses were also investigated. In the case of p(HEMA-co-NVP) hydrogels, the increase in the equilibrium water content (EWC) was primarily due to the increase in the bound water content. For p(HEMA-co-GMMA) hydrogels, an increase in free water content was the main reason for the increased EWC. In contrast, in the case of p(HEMA-co-GMA) hydrogels, a decrease in bound water content was observed to be the main factor that reduced the EWC. Photo-polymerized PHEMA hydrogels showed enhanced surface wettability and tensile modulus as compared to those produced via thermal polymerization.

Co-Electrodeposition of Bilirubin Oxidase with Redox Polymer through Ligand Substitution for Use as an Oxygen Reduction Cathode

  • Shin, Hyo-Sul;Kang, Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3118-3122
    • /
    • 2010
  • The water soluble redox polymer, poly(N-vinylimidazole) complexed with Os(4,4'-dichloro-2,2'-bipyridine)$_2Cl]^+$ (PVI-[Os(dCl-bpy)$_2Cl]^+$), was electrodeposited on the surface of a glassy carbon electrode by applying cycles of alternating square wave potentials between 0.2 V (2 s) and 0.7 V (2 s) to the electrode in a solution containing the redox polymer. The coordinating anionic ligand, $Cl^-$ of the osmium complex, became labile in the reduced state of the complex and was substituted by the imidazole of the PVI chain. The ligand substitution reactions resulted in crosslinking between the PVI chains, which made the redox polymer water insoluble and caused it to be deposited on the electrode surface. The deposited film was still electrically conducting and the continuous electrodeposition of the redox polymer was possible. When cycles of square wave potentials were applied to the electrode in a solution of bilirubin oxidase and the redox polymer, the enzyme was co-electrodeposited with the redox polymer, because the enzymes could be bound to the metal complexes through the ligand exchange reactions. The electrode with the film of the PVI-[Os(dCl-bpy)$_2Cl]^+$ redox polymer and the co-electrodeposited bilirubin oxidase was employed for the reduction of $O_2$ and a large increase of the currents was observed due to the electrocatalytic $O_2$ reduction with a half wave potential at 0.42 V vs. Ag/AgCl.

Synthesis of Pentiptycenediacetylene (Pentiptycene Diacetylene의 합성)

  • Han, Joungmin;Kwon, Hyungjun
    • Journal of Integrative Natural Science
    • /
    • v.2 no.2
    • /
    • pp.69-72
    • /
    • 2009
  • Pentiptycenediacetylene is very useful precursor materials for the synthesis of conducting polymer materials. The incorporation of rigid three-dimensional pentiptycene moieties into conjugated polymer backbones would offer several design advantages. They prevent ${\pi}$-stacking of the polymer backbones and thereby maintain high fluorescence quantum yields and spectroscopic stability in thin films. The pentiptycenediactylene was synthesized and characterized by 1H- and 13C-NMR spectroscopy.

  • PDF

Properties of Polymer-Modified Mortar with Styrene-Butyl Acrylate and Styrene Butadiene Rubber (S/BA와 SBR을 혼입한 폴리머 시멘트 모르타르의 특성)

  • Mun, Kyung-Ju;Song, Hae-Ryong;Hyung, Won-Gil
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.555-560
    • /
    • 2008
  • Polymer-modified mortars have been largely used as paving materials, flooring, waterproofing material, adhesives, anticorrosive linings, deck coverings, and other various materials. The various types and properties of the mixed polymer largely affect the characteristics of polymer-modified mortar that has been mixed with polymer latexes. Consequently, its application purposes are varied according to these properties. This paper investigates the typical properties of polymer-modified mortars that contain styrene and butyl acrylate latexes and styrene butadiene rubber. They are then tested to obtain air contents, water-cement ratios, flexural and compressive strengths, water absorption, and chloride-ion penetration. From the test results, the superior flexural strength of polymer-modified mortars is obtained at a S/BA-2 and a polymer-cement ratio of 20%. And, the water absorption and chloride ion penetration depth are greatly affected by the polymer-cement ratio rather than the types of polymer. In the polymer-modified mortar and concrete structures, aggregates are bound by such a co-matrix phase, resulting in the superior properties of polymer-modified mortar and concrete compared to conventional mortar and concrete.

Microbiologically - Enhanced Crack Remediation (MECR)

  • Bang Sookie S.;Ramakrishnan V.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.26-36
    • /
    • 2001
  • A novel approach of microbiologically-enhanced crack remediation (MECR) has been initiated and evaluated in this report. Under the laboratory conditions, Bacillus pasteurii was used to induce $CaCO_3$ precipitation as the microbial urease hydrolyzes urea to produce ammonia and carbon dioxide. The ammonia released in surroundings subsequently increases pH, leading to accumulation of insoluble $CaCO_3$. Scanning electron micrography (SEM) and x-ray diffraction (XRD) analyses evidenced the direct involvement of microorganisms in $CaCO_3$ precipitation. In biochemical studies, the primary roles of microorganisms and microbial urease were defined. Furthermore, the role of urease in $CaCO_3$ precipitation was characterized utilizing recombinant Escherichia coli that encoded B. pasteurii urease genes in a plasmid. Microorganisms immobilized in polyurethane (PU) polymer were applied to remediate concrete cracks. Although microbiologically- induced calcite precipitation enhanced neither the tensile strength nor the modulus of elasticity of the PU polymer, cement mortar whose crack was remediated with the cemaden polymer showed a significant increase in compressive strength. Through detailed investigation, MECR showed an excellent potential in cementing cracks in granite, concrete, and beyond.

  • PDF

Effects of Previous History on Diffusivity and Solubility of Gas in the Polymer Matrix (이력이 고분자 재료 안으로의 확산 및 용해에 미치는 영향)

  • 윤재동;차성운;최광용;조현종
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.108-113
    • /
    • 2000
  • An important process for making a new class of polymeric material is called microcellular plastics invented at the Massachusetts Institute of Technology. Many researches for microcellular plastics have been done in various ways and fields. But a research for the polymer which has previous history has not been tried yet. In this paper, weight gain of $CO_2$ was measured in a polymer matrix which had previous history and no history. In each case, experimental data for solubility and diffusivity was shown. A model for $CO_2$ solution process in molecular range was made. The conclusion of this paper is that the previous history has an effect on diffusivity but not solubility and the previous history made by $CO_2$ in supercritical state makes diffusivity of $CO_2$ larger.

  • PDF

Synthesis and Characterization of Polyimide Films for Flexible Display Substrates

  • Vu, Quang Hung;Kim, Jin-Woo;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.633-636
    • /
    • 2008
  • A series novel films of polyimide (PI) and co-polyimide (Co-PI) containing fluorine with colorless, flexible properties was prepared by a two-step process from various commercial aromatic monomers such as 4,4'-(Hexafluoro iso propylidene) diphthalic anhydride (6FDA), 2,2'-Bis(Trifluoromethyl) benzidine (TFDB), 2,2-bis(3-amino-4-hydroxyphenyl) hexafluoropropane (AH6FP) and Bis(4-(3-aminophenoxy)phenyl)sulfone (BAS). Furthermore, these obtained transparent and flexible Co-PI films exhibited excellent thermal stability with the decomposition temperature (at 5% weight loss) around of $500^{\circ}C$ and the glass transition temperature ($T_g$) in the range of $275-350^{\circ}C$.

  • PDF

Synthesis of $La_{1-x}Sr_xCoO_3$ (x≤0.2) at Low Temperature from PVA-polymeric Gel Precursors

  • 권호진;박동곤;국승태;박휴범;김건
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.12
    • /
    • pp.1249-1256
    • /
    • 1997
  • Single phase La1-xSrxCoO3 (x≤0.2) was synthesized as a uniform sized 100 nm particulates with relatively high surface area of 20-30 m2/g, at low temperature (≥600 ℃), from a polymeric gel precursors prepared by using poly(vinyl alcohol) as homogenizer. No minor phase developed during the crystallization when polymer/metal mole ratio was higher than 3. As the polymer/metal mole ratio was raised in the gel, the amount of carbonaceous residues in the amorphous solid precursor prepared by heating the gel at 300 ℃ increased. Most of the residues were eliminated by exothermic thermal decomposition around 400 ℃. The amount of residual carbon (less than 1%) left in the crystalline La1-xSrxCoO3 decreased as more polymer was used, eliminating detrimental effect which might be posed by using large amount of organic homogenizer. The crystal structure of La1-xSrxCoO3 synthesized at temperature lower than 800 ℃ was observed to be shifted from rhombohedral to more symmetric cubic. The structure shifted back to rhombohedral as the cubic sample was annealed at 1000 ℃.