• Title/Summary/Keyword: Co-phosphate

Search Result 626, Processing Time 0.033 seconds

A Study on Binary System of Calcium Phosphate-Kaolin, -Quartz, -Feldspar and Limestone (Calcium Phosphate와 Kaolin, Quartz, Feldspar, Limestone과의 이성분계 소성에 관한 연구)

  • 이응상;이성희
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.437-442
    • /
    • 1988
  • We have suffered number of problems in supplying bone ash for bone china bodies as raw materals, because of its impurity and quantity. To reduce these problems, we have synthesized tricalcium phosphate that was reacted by H2PO4 and CaCO3 ; 3Ca(OH)2+2H3PO4longrightarrowCa3(PO4)2+6H2O. Therefore, we have studied solid reactions of synthesized tricalcium phosphate withkaoline, limestone, feldspar and silica, respectively.

  • PDF

A Study of Calcium Phosphate Crystal Phases Prepared from Oyster Shells (굴 껍질로부터 제조된 calcium phosphate 결정상에 관한 연구)

  • Ryu, Su Chak
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.246-250
    • /
    • 2003
  • Calcium phosphate was prepared by chemical reaction formula using Oyster shells and $H_3$$PO_4$solutions. After added to 0.1 M∼0.9$ M H_3$$PO_4$ solution for oyster shell, prepared powders were investigated for heating properties and formation phase with heat treatment temperatures. As the results of XRD analysis of heated powders at $500^{\circ}C$$1200^{\circ}C$,$ CaCO_3$ phases were observed at the temperature of below 900 TEX>$^{\circ}C$ and in the condition of 0.1 M∼0.9 M $H_3$$PO_4$ solutions. However, $CaCO_3$, $CaPO_3$(OH) and $Ca_3$($PO_4$)$_2$ phases were appeared at the temperature range between $500∼900^{\circ}C$ and in the solution of 0.7 M to 0.9 M $H_3$$PO_4$. $Ca_{ 5}$($PO_4$)$_3$(OH) and CaO phases due to the decarbonation of oyster shells($CaCO_3$) were appeared at above $1000^{\circ}C$ and in the solution of below 0.5 M $H_3$X$PO_4$. However in the case of above 0.7 M $H_3$$H_4$ solutions, $Ca_{5}$ ($PO_4$)$_3$(OH) was decomposed into $Ca_3$($PO_4$)$_2$ at more higher 100$0^{\circ}C$. Thus $Ca_3$(X$Ca_4$)$_2$ phases were appeared at higher than 100$0^{\circ}C$.

Transport Characteristic of Heavy Metals in Contaminated Soil (오염된 토양층내의 중금속 이동 특성)

  • 조재범;현재혁;정진홍;김원석
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.236-239
    • /
    • 1998
  • This research was performed to check the transport characteristics of heavy metals in contaminated soil, that is, the influence of humic acid and phosphate on transport characteristics of heavy metals was studied. From the results of column mode experiments about heavy metal behavior, the order time to reach breakthrough and equilibrium was soil + humic acid( 20g ) > soil + humic acid ( 5 g ) > soil without Humic acid addition > soil+humic acid( 50g ). It is because the dissolved organic carbon content increased as the soil organic matter content increased. As the phosphate increased, so did the time to reach breakthrough and equilibrium. The order of time was soil + phosphate( 50 mg ) > soil + phosphate( 20 mg ) > soil . phosphate( 10 mg ) > soil without phosphate addition. It is because the phosphate ion worked as alkalinity donor and the calcium ion co-injected worked as the accelerator of coprecipitation of heavy metals.

  • PDF

Catalytic Hydrolysis of Phosphate Diesters as DNA Model with Tetranuclear Nickle (II) Complex

  • Sung, Nack-Do;Kim, Tae-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.86-89
    • /
    • 2006
  • The novel tetranuclear nickel (II) complex is a high rate accelerator in promoting hydrolysis of phosphate diesters. Nickel-bound bis-nitrophenyl phosphate (BNPP) can be $10^4$ times more reactive than the unbound BNPP. The large rate of enhancements by the complex slightly under basic condition has shown high catalytic activity in phosphate diester cleavage. The bell-shaped pH-rate profile indicated that the nickel-oxide form of the tetranuclear complex or its kinetic equivalent was the active species for cleaving BNPP. The catalytic hydrolysis between tetranuclear nickel (II) complex and phosphate diester proceeds via the formation of bidentate coordination of the anionic phosphate to the Ni (II) atom. This reveals that the complex has the possibility as artificial nuclease.

Characteristics of Phosphate Adsorption using Prepared Magnetic Iron Oxide (MIO) by Co-precipitation Method in Water (공침법에 의해 제조된 Magnetic Iron Oxide (MIO)를 이용한 수중 인 흡착 특성)

  • Lee, Won-Hee;Chung, Jinwook;Kim, Jong-Oh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.6
    • /
    • pp.609-615
    • /
    • 2015
  • This study was carried out for characterization of MIO synthesized in our laboratory by co-precipitation method and applied isotherm and kinetic models for adsorption properties. XRD analysis were conducted to find crystal structure of synthesized MIO. Further SEM and XPS analysis was performed before and after phosphate adsorption, and BET analysis for surface characterization. Phosphate stock solution was prepared by KH2PO4 for characterization of phosphate adsorption, and batch experiment was conducted using 50 ml conical tube. Langmuir and Freundlich models were applied based on adsorption equilibrium test of MIO by initial phosphate solution. Pseudo first order and pseudo second order models were applied for interpretation of kinetic model by temperature. Surface area and pore size of MIO were found $89.6m^2/g$ and 16 nm respectively. And, the determination coefficient ($R^2$) value of Langmuir model was 0.9779, which was comparatively higher than that of Freundlich isotherm model 0.9340.

Effect of a co-culture of scenedesmus dimorphus and nitrifiers on advanced wastewater treatment capacity (Scenedesmus dimorphus와 질산화 박테리아의 공배양이 하수고도처리능에 미치는 영향)

  • Choi, Kyoung-Jin;Zhang, Shan;Lee, SeokMin;Joo, Sung-Jin;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.691-698
    • /
    • 2014
  • This study investigated the effect of a co-culture of Scenedesmus dimorphus and nitrifiers using artificial wastewater on the removal of ammonium, nitrate and phosphate in the advanced treatment. To test the synergistic effect of the co-culture, we compared the co-culture treatment with the cultures using S. dimorphus-only and nitrifiers-only treatment as controls. After 6 days of incubation, nitrate was removed only in the co-culture treatment and total amount of N removal was 1.3 times and 1.6 times higher in the co-culture treatment compared to those in the S. dimorphus- and nitrifiers-only treatments, respectively. In case of total amount of P, co-culture treatment removed 1.2 times and 12 times more P than the S. dimorphus -and nitrifiers-only conditions, respectively. This indicates that the co-culture improved removal rates for ammonium, nitrate, and phosphate. This further implies that there was no need for denitrification of nitrate and luxury uptake of P processes because nitrate and phosphate can be removed from the uptake by S. dimorphus. In addition, co-culture condition maintained high DO above 7 mg/L without artificial aeration, which is enough for nitrification, implying that co-culture has a potential to decrease or remove aeration cost in the wastewater treatment plants.

The Ecological Vegetation by the Neutralizing Treatment Techniques of the Acid Sulfate Soil (특이산성토의 중화처리기법에 따른 생태적 녹화)

  • Cho, Sung-Rok;Kim, Jae-Hwan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.1
    • /
    • pp.47-59
    • /
    • 2019
  • This study was composed of four treatments [no treatment, phosphate + limestone layer treatment, phosphate + sodium bicarbonate + cement layer treatment, and phosphate + sodium bicarbonate + limestone layer treatment] for figuring out vegetation effects on the acid drainage slope. Treated acid neutralizing techniques were effective for neutralizing acidity and vegetative growth in order of [first: phosphate + sodium bicarbonate + limestone layer treatment, second: phosphate + sodium bicarbonate+cement layer treatment, third: phosphate + limestone layer treatment and fourth: no treatment] on the acid drainage slope. We found out that sodium bicarbonate treatment was additory effect on neutralizing acidity and increasing vegetaive growth besides phosphate and neutralizing layer treatments. In neutralizing layer treatments, Limestone layer was more effective for vegetation and acidity compared to cement layer treatment. Cement layer showed negative initial vegetative growth probably due to high soil hardness and toxicity in spite of acid neutralizing effect. Concerning plants growth characteristics, The surface coverage rates of herbaceous plants, namely as Lotus corniculatus var. japonicus and Coreopsis drummondii L were high in the phosphate + sodium bicarbonate + limestone layer treatment while Festuca arundinacea was high in the phosphate + sodium bicarbonate + cement layer treatment. We also figured out that soil acidity affected more on root than top vegetative growth.

Phosphorus Release from Waste Activated Sludge by Microwave Heating (마이크로웨이브를 이용한 잉여 슬러지 가온과 인산염 방출)

  • Ahn, Johwan;Yang, Hoiweon;Kim, Jangho;Min, Sungjae;Kim, Junghwan
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.387-393
    • /
    • 2017
  • A chemical batch tests were conducted to evaluate if microwave heating enhances phosphorous release from waste activated sludge (WAS) at pH 2.5, 5, 7, 9 and 11. Polyphosphate-accumulating organisms have a unique physiological feature, which releases intracellular polyphosphate granules when they are exposed under high temperature environments. Microwave irradiation was found to encourage large amount of phosphorus release from WAS, depending on pH and temperature conditions. Most of phosphorus was released below $59^{\circ}C$ within 30 min. A marked increase in phosphorus release was observed under alkaline or acidic conditions. However, based on control tests for phosphorus release under different pH conditions without microwave heating, the largest amount of phosphorus released by microwave irradiation was found at pH 7, followed by 5, 9, 11. On the other hand, crystallization was conducted to obtain magnesium ammonium phosphate (MAP) from phosphate released by microwave heating at pH 7. X-ray diffraction analysis confirmed that the recovered crystalline materials were MAP. MAP is an environmentally friendly fertilizer, which slowly releases ammonia and phosphorus in response to the demand of plant root. Thus, the recovered MAP as a phosphate fertilizer is fully expected to play a important role in the reduction of agricultural non-point pollution.

Phosphate Uptake by Acinetobacter lwoffi PO8 and Accumulation (Acinetobacter lwoffi PO8에 의한 인산흡수 및 축적)

  • Yoon, Min-Ho;Ko, Jung-Youn;Choi, Woo-Young;Shin, Kong-Sik
    • Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.163-168
    • /
    • 2000
  • To remove phosphate accumulated in the soil and water, Acinetobacter lwoffi PO8 possessing a high ability to accumulate phosphate was isolated from a active sludge. Bacterium was cultured in the liquid medium containing $150\;{\mu}g/mL$ of phosphate at $30^{\circ}C$ in different culture conditions to examine intracellular phosphate uptake. The initial pH in the range of $7.5{\sim}8.5$ was effective on the growth and phosphate uptake of the strain. Glycerol and arabinose used as a carbon sources showed 93 and 91% the phsphate uptake, respectively. Among the nitrogen sources, ammonium salt such as $NH_4NO_3$ and $(NH_4)_2SO_4$ was effectively utilized on the phosphate uptake compared with amino compounds. The rate of phosphate uptake of $NH_4NO_3$, and $(NH_4)_2SO_4$, was 95 and 96%, respectively The growth and Phosphate uptake ability in the strain were significantly promoted when metal ions were added in the medium; $Co^{2+}$, however, was not utilized by the strain. The capacity of phosphate uptake was enhanced to $10{\sim}20%$ when arginine, methionine, or lysine was added. Using $^{32}P$ to examine the uptake Pattern of intracellular phosphate, experiment result showed that polyphosphate was largely found in the fraction of intracellular inorganic phosphate of Acinetobacter lwoffi PO8.

  • PDF

Precipitation of Calcium Phosphate at pH 5.0 for the β Tri-calcium Phosphate Cement

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.275-279
    • /
    • 2013
  • The purpose of this study was to prepare calcium phosphate cement [CPC] for use in artificial bone. Nano-crystalline calcium phosphate [CaP] was precipitated at $37^{\circ}C$ using highly active $Ca(OH)_2$ in DI water and an aqueous solution of $H_3PO_4$. From the XRD measurements, the nano-CaP powder was close to apatitic TCP phase and the powders fired at $800^{\circ}C$ showed a critical ${\beta}$-TCP phase. A mixture of one mole $CaCO_3$ and two moles di-calcium phosphate was calcined at $1100^{\circ}C$ to make a reference ${\beta}$-TCP material. The nano-CaP powders were added to the normal ${\beta}$-TCP matrix and fired at $900^{\circ}C$ to make a ${\beta}$-TCP block. The sintered block showed improved mechanical strength, which was caused by the solid state interaction between nano-CaP and normal ${\beta}$-TCP.