• Title/Summary/Keyword: Co-occurrence Networks

Search Result 56, Processing Time 0.027 seconds

A Comparison of Hospice Care Research Topics between Korea and Other Countries Using Text Network Analysis (텍스트네트워크분석을 활용한 국내·외 호스피스 간호 연구 주제의 비교 분석)

  • Park, Eun-Jun;Kim, Youngji;Park, Chan Sook
    • Journal of Korean Academy of Nursing
    • /
    • v.47 no.5
    • /
    • pp.600-612
    • /
    • 2017
  • Purpose: This study aimed to identify and compare hospice care research topics between Korean and international nursing studies using text network analysis. Methods: The study was conducted in four steps: 1) collecting abstracts of relevant journal articles, 2) extracting and cleaning keywords (semantic morphemes) from the abstracts, 3) developing co-occurrence matrices and text-networks of keywords, and 4) analyzing network-related measures including degree centrality, closeness centrality, betweenness centrality, and clustering using the NetMiner program. Abstracts from 347 Korean and 1,926 international studies for the period of 1998-2016 were analyzed. Results: Between Korean and international studies, six of the most important core keywords-"hospice," "patient," "death," "RNs," "care," and "family"-were common, whereas "cancer" from Korean studies and "palliative care" from international studies ranked more highly. Keywords such as "attitude," "spirituality," "life," "effect," and "meaning" for Korean studies and "communication," "treatment," "USA," and "doctor" for international studies uniquely emerged as core keywords in recent studies (2011~2016). Five subtopic groups each were identified from Korean and international studies. Two common subtopics were "hospice palliative care and volunteers" and "cancer patients." Conclusion: For a better quality of hospice care in Korea, it is recommended that nursing researchers focus on study topics of patients with non-cancer disease, children and family, communication, and pain and symptom management.

Text Network Analysis of Newspaper Articles on Life-sustaining Treatments (연명의료 관련 신문 기사의 텍스트네트워크분석)

  • Park, Eun-Jun;Ahn, Dae Woong;Park, Chan Sook
    • Research in Community and Public Health Nursing
    • /
    • v.29 no.2
    • /
    • pp.244-256
    • /
    • 2018
  • Purpose: This study tried to understand discourses of life-sustaining treatments in general daily and healthcare newspapers. Methods: A text-network analysis was conducted using the NetMiner program. Firstly, 572 articles from 11 daily newspapers and 258 articles from 8 healthcare newspapers were collected, which were published from August 2013 to October 2016. Secondly, keywords (semantic morphemes) were extracted from the articles and rearranged by removing stop-words, refining similar words, excluding non-relevant words, and defining meaningful phrases. Finally, co-occurrence matrices of the keywords with a frequency of 30 times or higher were developed and statistical measures-indices of degree and betweenness centrality, ego-networks, and clustering-were obtained. Results: In the general daily and healthcare newspapers, the top eight core keywords were common: "patients," "death," "LST (life-sustaining treatments)," "hospice palliative care," "hospitals," "family," "opinion," and "withdrawal." There were also common subtopics shared by the general daily and healthcare newspapers: withdrawal of LST, hospice palliative care, National Bioethics Review Committee, and self-determination and proxy decision of patients and family. Additionally, the general daily newspapers included diverse social interest or events like well-dying, euthanasia, and the death of farmer Baek Nam-ki, whereas the healthcare newspapers discussed problems of the relevant laws, and insufficient infrastructure and low reimbursement for hospice-palliative care. Conclusion: The discourse that withdrawal of futile LST should be allowed according to the patient's will was consistent in the newspapers. Given that newspaper articles influence knowledge and attitudes of the public, RNs are recommended to participate actively in public communication on LST.

Identification of Knowledge Structure of Pain Management Nursing Research Applying Text Network Analysis (텍스트네트워크분석을 적용한 통증관리 간호연구의 지식구조)

  • Park, Chan Sook;Park, Eun-Jun
    • Journal of Korean Academy of Nursing
    • /
    • v.49 no.5
    • /
    • pp.538-549
    • /
    • 2019
  • Purpose: This study aimed to explore and compare the knowledge structure of pain management nursing research, between Korea and other countries, applying a text network analysis. Methods: 321 Korean and 6,685 international study abstracts of pain management, published from 2004 to 2017, were collected. Keywords and meaningful morphemes from the abstracts were analyzed and refined, and their co-occurrence matrix was generated. Two networks of 140 and 424 keywords, respectively, of domestic and international studies were analyzed using NetMiner 4.3 software for degree centrality, closeness centrality, betweenness centrality, and eigenvector community analysis. Results: In both Korean and international studies, the most important, core-keywords were "pain," "patient," "pain management," "registered nurses," "care," "cancer," "need," "analgesia," "assessment," and "surgery." While some keywords like "education," "knowledge," and "patient-controlled analgesia" found to be important in Korean studies; "treatment," "hospice palliative care," and "children" were critical keywords in international studies. Three common sub-topic groups found in Korean and international studies were "pain and accompanying symptoms," "target groups of pain management," and "RNs' performance of pain management." It is only in recent years (2016~17), that keywords such as "performance," "attitude," "depression," and "sleep" have become more important in Korean studies than, while keywords such as "assessment," "intervention," "analgesia," and "chronic pain" have become important in international studies. Conclusion: It is suggested that Korean pain-management researchers should expand their concerns to children and adolescents, the elderly, patients with chronic pain, patients in diverse healthcare settings, and patients' use of opioid analgesia. Moreover, researchers need to approach pain-management with a quality of life perspective rather than a mere focus on individual symptoms.

Convolutional Neural Network with Expert Knowledge for Hyperspectral Remote Sensing Imagery Classification

  • Wu, Chunming;Wang, Meng;Gao, Lang;Song, Weijing;Tian, Tian;Choo, Kim-Kwang Raymond
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3917-3941
    • /
    • 2019
  • The recent interest in artificial intelligence and machine learning has partly contributed to an interest in the use of such approaches for hyperspectral remote sensing (HRS) imagery classification, as evidenced by the increasing number of deep framework with deep convolutional neural networks (CNN) structures proposed in the literature. In these approaches, the assumption of obtaining high quality deep features by using CNN is not always easy and efficient because of the complex data distribution and the limited sample size. In this paper, conventional handcrafted learning-based multi features based on expert knowledge are introduced as the input of a special designed CNN to improve the pixel description and classification performance of HRS imagery. The introduction of these handcrafted features can reduce the complexity of the original HRS data and reduce the sample requirements by eliminating redundant information and improving the starting point of deep feature training. It also provides some concise and effective features that are not readily available from direct training with CNN. Evaluations using three public HRS datasets demonstrate the utility of our proposed method in HRS classification.

Network Analysis of the Intellectual Structure of Addiction Research in Social Sciences: Based on the KCI Articles Published in 2019 (사회과학 중독연구 분야의 지적구조에 관한 네트워크 분석 : 2019년도 KCI 등재 논문을 기반으로)

  • Lee, Serim;Chun, JongSerl
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.21-37
    • /
    • 2021
  • This study investigated the intellectual structure of the latest trends in Korean addiction research in the social sciences. A network analysis of keywords with co-word occurrence was performed on 172 papers from the KCI database based on the data from the year of 2019, and a total of 432 keywords were extracted. The network analysis was performed using several programs: Bibexcel, COOC, WNET, and NodeXL. As a result of the study, keywords related to addiction type, study subjects, research methods, and research variables were found, and a total of 20 clusters were identified. Furthermore, to identify and measure weighted networks, the relationships between each keyword were explored and discussed in detail through a network analysis of global centralities, local centralities, and betweenness centralities. The study indicated that the latest issues were focused on smartphone addiction and provided implications for the future research and practice that fields and topics of relationship addiction, food addiction, and work addiction should be more considered. Further, the study discussed the relationship between drug addiction-crime, alcohol addiction-family, and gambling addiction-motivation and the necessity of qualitative study.

Knowledge Structure of Chronic Obstructive Pulmonary Disease Health Information on Health-Related Websites and Patients' Needs in the Literature Using Text Network Analysis (웹사이트에 제공된 만성폐쇄성폐질환 건강정보와 연구문헌에 나타난 환자의 건강정보 요구의 지식구조: 텍스트 네트워크 분석 활용)

  • Choi, Ja Yun;Lim, Su Yeon;Yun, So Young
    • Journal of Korean Academy of Nursing
    • /
    • v.51 no.6
    • /
    • pp.720-731
    • /
    • 2021
  • Purpose: The purpose of this study was to identify the knowledge structure of health information (HI) for chronic obstructive pulmonary disease (COPD). Methods: Keywords or meaningful morphemes from HI presented on five health-related websites (HRWs) of one national HI institute and four hospitals, as well as HI needs among patients presented in nine literature, were reviewed, refined, and analyzed using text network analysis and their co-occurrence matrix was generated. Two networks of 61 and 35 keywords, respectively, were analyzed for degree, closeness, and betweenness centrality, as well as betweenness community analysis. Results: The most common keywords pertaining to HI on HRWs were lung, inhaler, smoking, dyspnea, and infection, focusing COPD treatment. In contrast, HI needs among patients were lung, medication, support, symptom, and smoking cessation, expanding to disease management. Two common sub-topic groups in HI on HRWs were COPD overview and medication administration, whereas three common sub-topic groups in HI needs among patients in the literature were COPD overview, self-management, and emotional management. Conclusion: The knowledge structure of HI on HRWs is medically oriented, while patients need supportive information. Thus, the support system for self-management and emotional management on HRWs must be informed according to the structure of patients' needs for HI. Healthcare providers should consider presenting COPD patient-centered information on HRWs.

Perceptions of Disabled Sports in Newspapers Using Semantic Networks Analysis (신문기사에 나타난 장애인스포츠에 대한 인식 -의미연결망을 활용한 빅데이터 분석-)

  • Han, Min-kyu;Kim, Won-Kyoung;Yoon, Jiwun
    • 재활복지
    • /
    • v.20 no.4
    • /
    • pp.157-175
    • /
    • 2016
  • The purpose of this study was to analyze the perceptions of disabled sports that were reported the newspapers using semantic network analysis method. for this purpose, 745 news articles were selected from 21 source in Naver news searching engine. The main keyword for searching on newspapers was 'disabled sports'. Krkwic software was used for keyword cleansing and co-occurrence of text to text matrix in frequencies. Centrality indices that are degree, between and eigenvector, were used to analyze the perceptions of disabled sports from Netminer 4.0 for semantic network analysis. The conclusion of overall results from this study are follows; First, the core keyword of disabled sports in newspapers are 'impression', 'challenge', 'festival', 'dream' and hope. And there is different concepts of cognition among types of disability. Second, there are two elements on the perceptions of disabled sports from reported newspapers; sports performance and emotional. Specifically, main stream of keyword were 'Paralympics' and 'Special Olympics' on sports performance element and 'impressive' and 'challenge' in emotion element.

Trends in disaster safety research in Korea: Focusing on the journal papers of the departments related to disaster prevention and safety engineering

  • Kim, Byungkyu;You, Beom-Jong;Shim, Hyoung-Seop
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.43-57
    • /
    • 2022
  • In this paper, we propose a method of analyzing research papers published by researchers belonging to university departments in the field of disaster & safety for the scientometric analysis of the research status in the field of disaster safety. In order to conduct analysis research, the dataset constructed in previous studies was newly improved and utilized. In detail, for research papers of authors belonging to the disaster prevention and safety engineering type department of domestic universities, institution identification, cited journal identification of references, department type classification, disaster safety type classification, researcher major information, KSIC(Korean Standard Industrial Classification) mapping information was reflected in the experimental data. The proposed method has a difference from previous studies in the field of disaster & safety and data set based on related keyword searches. As a result of the analysis, the type and regional distribution of organizations belonging to the department of disaster prevention and safety engineering, the composition of co-authored department types, the researchers' majors, the status of disaster safety types and standard industry classification, the status of citations in academic journals, and major keywords were identified in detail. In addition, various co-occurrence networks were created and visualized for each analysis unit to identify key connections. The research results will be used to identify and recommend major organizations and information by disaster type for the establishment of an intelligent crisis warning system. In order to provide comprehensive and constant analysis information in the future, it is necessary to expand the analysis scope and automate the identification and classification process for data set construction.

Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques (텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석)

  • Bae, Jung-Hwan;Son, Ji-Eun;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.141-156
    • /
    • 2013
  • Social media is a representative form of the Web 2.0 that shapes the change of a user's information behavior by allowing users to produce their own contents without any expert skills. In particular, as a new communication medium, it has a profound impact on the social change by enabling users to communicate with the masses and acquaintances their opinions and thoughts. Social media data plays a significant role in an emerging Big Data arena. A variety of research areas such as social network analysis, opinion mining, and so on, therefore, have paid attention to discover meaningful information from vast amounts of data buried in social media. Social media has recently become main foci to the field of Information Retrieval and Text Mining because not only it produces massive unstructured textual data in real-time but also it serves as an influential channel for opinion leading. But most of the previous studies have adopted broad-brush and limited approaches. These approaches have made it difficult to find and analyze new information. To overcome these limitations, we developed a real-time Twitter trend mining system to capture the trend in real-time processing big stream datasets of Twitter. The system offers the functions of term co-occurrence retrieval, visualization of Twitter users by query, similarity calculation between two users, topic modeling to keep track of changes of topical trend, and mention-based user network analysis. In addition, we conducted a case study on the 2012 Korean presidential election. We collected 1,737,969 tweets which contain candidates' name and election on Twitter in Korea (http://www.twitter.com/) for one month in 2012 (October 1 to October 31). The case study shows that the system provides useful information and detects the trend of society effectively. The system also retrieves the list of terms co-occurred by given query terms. We compare the results of term co-occurrence retrieval by giving influential candidates' name, 'Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn' as query terms. General terms which are related to presidential election such as 'Presidential Election', 'Proclamation in Support', Public opinion poll' appear frequently. Also the results show specific terms that differentiate each candidate's feature such as 'Park Jung Hee' and 'Yuk Young Su' from the query 'Guen Hae Park', 'a single candidacy agreement' and 'Time of voting extension' from the query 'Jae In Moon' and 'a single candidacy agreement' and 'down contract' from the query 'Chul Su Ahn'. Our system not only extracts 10 topics along with related terms but also shows topics' dynamic changes over time by employing the multinomial Latent Dirichlet Allocation technique. Each topic can show one of two types of patterns-Rising tendency and Falling tendencydepending on the change of the probability distribution. To determine the relationship between topic trends in Twitter and social issues in the real world, we compare topic trends with related news articles. We are able to identify that Twitter can track the issue faster than the other media, newspapers. The user network in Twitter is different from those of other social media because of distinctive characteristics of making relationships in Twitter. Twitter users can make their relationships by exchanging mentions. We visualize and analyze mention based networks of 136,754 users. We put three candidates' name as query terms-Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn'. The results show that Twitter users mention all candidates' name regardless of their political tendencies. This case study discloses that Twitter could be an effective tool to detect and predict dynamic changes of social issues, and mention-based user networks could show different aspects of user behavior as a unique network that is uniquely found in Twitter.

Analyzing Research Trends in Blockchain Studies in South Korea Using Dynamic Topic Modeling and Network Analysis (다이나믹 토픽모델링 및 네트워크 분석 기법을 통한 블록체인 관련 국내 연구 동향 분석)

  • Kim, Donghun;Oh, Chanhee;Zhu, Yongjun
    • Journal of the Korean Society for information Management
    • /
    • v.38 no.3
    • /
    • pp.23-39
    • /
    • 2021
  • This study aims to explore research trends in Blockchain studies in South Korea using dynamic topic modeling and network analysis. To achieve this goal, we conducted the university & institute collaboration network analysis, the keyword co-occurrence network analysis, and times series topic analysis using dynamic topic modeling. Through the university & institute collaboration network analysis, we found major universities such as Soongsil University, Soonchunhyang University, Korea University, Korea Advanced Institute of Science and Technology (KAIST) and major institutes such as Ministry of National Defense, Korea Railroad Research Institute, Samil PricewaterhouseCoopers, Electronics and Telecommunications Research Institute that led collaborative research. Next, through the analysis of the keyword co-occurrence network, we found major research keywords including virtual assets (Cryptocurrency, Bitcoin, Ethereum, Virtual currency), blockchain technology (Distributed ledger, Distributed ledger technology), finance (Smart contract), and information security (Security, privacy, Personal information). Smart contracts showed the highest scores in all network centrality measures showing its importance in the field. Finally, through the time series topic analysis, we identified five major topics including blockchain technology, blockchain ecosystem, blockchain application 1 (trade, online voting, real estate), blockchain application 2 (food, tourism, distribution, media), and blockchain application 3 (economy, finance). Changes of topics were also investigated by exploring proportions of representative keywords for each topic. The study is the first of its kind to attempt to conduct university & institute collaboration networks analysis and dynamic topic modeling-based times series topic analysis for exploring research trends in Blockchain studies in South Korea. Our results can be used by government agencies, universities, and research institutes to develop effective strategies of promoting university & institutes collaboration and interdisciplinary research in the field.