• Title/Summary/Keyword: Co-occurrence Analysis

Search Result 469, Processing Time 0.028 seconds

Histogram Equalized Eigen Co-occurrence Features for Color Image Classification (컬러이미지 검색을 위한 히스토그램 평활화 기반 고유 병발 특징에 관한 연구)

  • Yoon, TaeBok;Choi, YoungMee;Choo, MoonWon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.705-708
    • /
    • 2010
  • An eigen color co-occurrence approach is proposed that exploits the correlation between color channels to identify the degree of image similarity. This method is based on traditional co-occurrence matrix method and histogram equalization. On the purpose of feature extraction, eigen color co-occurrence matrices are computed for extracting the statistical relationships embedded in color images by applying Principal Component Analysis (PCA) on a set of color co-occurrence matrices, which are computed on the histogram equalized images. That eigen space is created with a set of orthogonal axes to gain the essential structures of color co-occurrence matrices, which is used to identify the degree of similarity to classify an input image to be tested for various purposes. In this paper RGB, Gaussian color space are compared with grayscale image in terms of PCA eigen features embedded in histogram equalized co-occurrence features. The experimental results are presented.

Co-occurrence Patterns of Bird Species in the World

  • Kim, Young Min;Hong, Sungwon;Lee, Yu Seong;Oh, Ki Cheol;Kim, Gu Yeon;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.478-482
    • /
    • 2017
  • In order to identify key nations and bird species of conservation concern we described multinational collaborations as defined using network analysis linked by birds that are found in all nations in the network. We used network analysis to assess the patterns in bird occurrence for 10,422 bird inventories from 244 countries and territories. Nations that are important in multinational collaborations for bird conservation were assessed using the centrality measures, closeness and betweenness centrality. Countries important for the multinational collaboration of bird conservation were examined based on their centrality measures, which included closeness and betweenness centralities. Comparatively, the co-occurrence network was divided into four groups that reveal different biogeographical structures. A group with higher closeness centrality included countries in southern Africa and had the potential to affect species in many other countries. Birds in countries in Asia, Australia and the South Pacific that are important to the cohesiveness of the global network had a higher score of betweenness centrality. Countries that had higher numbers of bird species and more extensively distributed bird species had higher centrality scores; in these countries, birds may act as excellent indicators of trends in the co-occurrence bird network. For effective bird conservation in the world, much stronger coordination among countries is required. Bird co-occurrence patterns can provide a suitable and powerful framework for understanding the complexity of co-occurrence patterns and consequences for multinational collaborations on bird conservation.

Measure of the Associations of Accupoints and Pathologies Documented in the Classical Acupuncture Literature (고의서에 나타난 경혈과 병증의 연관성 측정 및 시각화 - 침구자생경 분석 예를 중심으로 -)

  • Oh, Junho
    • Korean Journal of Acupuncture
    • /
    • v.33 no.1
    • /
    • pp.18-32
    • /
    • 2016
  • Objectives : This study aims to analyze the co-occurrence of pathological symptoms and corresponding acupoints as documented by the comprehensive acupuncture and moxibustion records in the classical texts of Far East traditional medicine as an aid to a more efficient understanding of the tacit treatment principles of ancient physicians. Methods : The Classic of Nourishing Life with Acupuncture and Moxibustion(Zhenjiu Zisheng Jing; hereinafter ZZJ) was selected as the primary reference book for the analysis. The pathology-acupoint co-occurrence analysis was performed by applying 4 values of vector space measures(weighted Euclidean distance, Euclidean distance, $Cram\acute{e}r^{\prime}s$ V and Canberra distance), which measure the distance between the observed and expected co-occurrence counts, and 3 values of probabilistic measures(association strength, Fisher's exact test and Jaccard similarity), which measure the probability of observed co-occurrences. Results : The treatment records contained in ZZJ were preprocessed, which yielded 4162 pathology-acupoint sets. Co-occurrence was performed applying 7 different analysis variables, followed by a prediction simulation. The prediction simulation results revealed the Weighted Euclidean distance had the highest prediction rate with 24.32%, followed by Canberra distance(23.14%) and association strength(21.29%). Conclusions : The weighted Euclidean distance among the vector space measures and the association strength among the probabilistic measures were verified to be the most efficient analysis methods in analyzing the correlation between acupoints and pathologies found in the classical medical texts.

Damage classification of concrete structures based on grey level co-occurrence matrix using Haar's discrete wavelet transform

  • Kabir, Shahid;Rivard, Patrice
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.243-257
    • /
    • 2007
  • A novel method for recognition, characterization, and quantification of deterioration in bridge components and laboratory concrete samples is presented in this paper. The proposed scheme is based on grey level co-occurrence matrix texture analysis using Haar's discrete wavelet transform on concrete imagery. Each image is described by a subset of band-filtered images containing wavelet coefficients, and then reconstructed images are employed in characterizing the texture, using grey level co-occurrence matrices, of the different types and degrees of damage: map-cracking, spalling and steel corrosion. A comparative study was conducted to evaluate the efficiency of the supervised maximum likelihood and unsupervised K-means classification techniques, in order to classify and quantify the deterioration and its extent. Experimental results show both methods are relatively effective in characterizing and quantifying damage; however, the supervised technique produced more accurate results, with overall classification accuracies ranging from 76.8% to 79.1%.

Language Identification by Fusion of Gabor, MDLC, and Co-Occurrence Features (Gabor, MDLC, Co-Occurrence 특징의 융합에 의한 언어 인식)

  • Jang, Ick-Hoon;Kim, Ji-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.3
    • /
    • pp.277-286
    • /
    • 2014
  • In this paper, we propose a texture feature-based language identification by fusion of Gabor, MDLC (multi-lag directional local correlation), and co-occurrence features. In the proposed method, for a test image, Gabor magnitude images are first obtained by Gabor transform followed by magnitude operator. Moments for the Gabor magniude images are then computed and vectorized. MDLC images are then obtained by MDLC operator and their moments are computed and vectorized. GLCM (gray-level co-occurrence matrix) is next calculated from the test image and co-occurrence features are computed using the GLCM, and the features are also vectorized. The three vectors of the Gabor, MDLC, and co-occurrence features are fused into a feature vector. In classification, the WPCA (whitened principal component analysis) classifier, which is usually adopted in the face identification, searches the training feature vector most similar to the test feature vector. We evaluate the performance of our method by examining averaged identification rates for a test document image DB obtained by scanning of documents with 15 languages. Experimental results show that the proposed method yields excellent language identification with rather low feature dimension for the test DB.

Proposal of Analysis Method for Biota Survey Data Using Co-occurrence Frequency

  • Yong-Ki Kim;Jeong-Boon Lee;Sung Je Lee;Jong-Hyun Kang
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.5 no.3
    • /
    • pp.76-85
    • /
    • 2024
  • The purpose of this study is to propose a new method of analysis focusing on interconnections between species rather than traditional biodiversity analysis, which represents ecosystems in terms of species and individual counts such as species diversity and species richness. This new approach aims to enhance our understanding of ecosystem networks. Utilizing data from the 4th National Natural Environment Survey (2014-2018), the following eight taxonomic groups were targeted for our study: herbaceous plants, woody plants, butterflies, Passeriformes birds, mammals, reptiles & amphibians, freshwater fishes, and benthonic macroinvertebrates. A co-occurrence frequency analysis was conducted using nationwide data collected over five years. As a result, in all eight taxonomic groups, the degree value represented by a linear regression trend line showed a slope of 0.8 and the weighted degree value showed an exponential nonlinear curve trend line with a coefficient of determination (R2) exceeding 0.95. The average value of the clustering coefficient was also around 0.8, reminiscent of well-known social phenomena. Creating a combination set from the species list grouped by temporal information such as survey date and spatial information such as coordinates or grids is an easy approach to discern species distributed regionally and locally. Particularly, grouping by species or taxonomic groups to produce data such as co-occurrence frequency between survey points could allow us to discover spatial similarities based on species present. This analysis could overcome limitations of species data. Since there are no restrictions on time or space, data collected over a short period in a small area and long-term national-scale data can be analyzed through appropriate grouping. The co-occurrence frequency analysis enables us to measure how many species are associated with a single species and the frequency of associations among each species, which will greatly help us understand ecosystems that seem too complex to comprehend. Such connectivity data and graphs generated by the co-occurrence frequency analysis of species are expected to provide a wealth of information and insights not only to researchers, but also to those who observe, manage, and live within ecosystems.

Comparative Analysis of Job Satisfaction Factors, Using LDA Topic Modeling by Industries : The Case Study of Job Planet Reviews (토픽모델링 기법을 활용한 산업별 직무만족요인 비교 조사 : 잡플래닛 리뷰를 중심으로)

  • Kim, Dongwook;Kang, Juyoung;Lim, Jay Ick
    • Journal of Information Technology Services
    • /
    • v.15 no.3
    • /
    • pp.157-171
    • /
    • 2016
  • As unemployment rates and concerns about turnover keep growing, the need for information is also increasing. In these situations, the job reviews which share information about the company catch people's attention because they are usually created by people who worked at the company. The development of SNS and mobile environments has led to an increase in the web services that provide job reviews. For example, Jobplanet is a job review service in Korea, and Glassdoor.com offers a similar service in the US. Despite this attention, however, research utilizing job reviews is insufficient. This paper asks whether there are differences in ratios of job satisfaction factors by industry, using LDA topic modeling and co-occurrence analysis to explore the differences. Through the results of LDA, we find that the ratios of job satisfaction factors are similar by industry. At the same time, the results of co-occurrence analysis show that the co-occurrence frequency of some job satisfaction factors appears high: pay and welfare, balance of work and life, company culture. We expect that the result of this research will be helpful in comparative analysis of job satisfaction factors by industry. Furthermore, in this paper we suggest how to use the job review data in organizational behavior research.

Discovery of promising business items by technology-industry concordance and keyword co-occurrence analysis of US patents. (기술-산업 연계구조 및 특허 분석을 통한 미래유망 아이템 발굴)

  • Cho Byoung-Youl;Rho Hyun-Sook
    • Journal of Korea Technology Innovation Society
    • /
    • v.8 no.2
    • /
    • pp.860-885
    • /
    • 2005
  • This study relates to develop a quantitative method through which promising technology-based business items can be discovered and selected. For this study, we utilized patent trend analysis, technology-industry concordance analysis, and keyword co-occurrence analysis of US patents. By analyzing patent trends and technology-industry concordance, we were able to find out the emerging industry trends : prevalence of bio industry, service industry, and B2C business. From the direct and co-occurrence analysis of newly discovered patent keywords in the year, 2000, 28 promising business item candidates were extracted. Finally, the promising item candidates were prioritized using 4 business attractiveness determinants; market size, product life cycle, degree of the technological innovation, and coincidence with the industry trends. This result implicates that reliable discovery and selection of promising technology-based business items can be performed by a quantitative, objective and low- cost process using knowledge discovery method from patent database instead of peer review.

  • PDF

Text Mining of Wood Science Research Published in Korean and Japanese Journals

  • Eun-Suk JANG
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.458-469
    • /
    • 2023
  • Text mining techniques provide valuable insights into research information across various fields. In this study, text mining was used to identify research trends in wood science from 2012 to 2022, with a focus on representative journals published in Korea and Japan. Abstracts from Journal of the Korean Wood Science and Technology (JKWST, 785 articles) and Journal of Wood Science (JWS, 812 articles) obtained from the SCOPUS database were analyzed in terms of the word frequency (specifically, term frequency-inverse document frequency) and co-occurrence network analysis. Both journals showed a significant occurrence of words related to the physical and mechanical properties of wood. Furthermore, words related to wood species native to each country and their respective timber industries frequently appeared in both journals. CLT was a common keyword in engineering wood materials in Korea and Japan. In addition, the keywords "MDF," "MUF," and "GFRP" were ranked in the top 50 in Korea. Research on wood anatomy was inferred to be more active in Japan than in Korea. Co-occurrence network analysis showed that words related to the physical and structural characteristics of wood were organically related to wood materials.

An Exploratory Study on Mobile App Review through Comparative Analysis between South Korea and U.S. (한국과 미국 간 모바일 앱 리뷰의 감성과 토픽 차이에 관한 탐색적 비교 분석)

  • Cho, Hyukjun;Kang, Juyoung;Jeong, Dae Yong
    • Journal of Information Technology Services
    • /
    • v.15 no.2
    • /
    • pp.169-184
    • /
    • 2016
  • Smartphone use is rapidly spreading due to the advantage of being able to connect to the Internet anytime, anywhere--and mobile app development is developing accordingly. The characteristic of the mobile app market is the ability to launch one's app into foreign markets with ease as long as the platform is the same. However, a large amount of prior research asserts that consumers behave differently depending on their culture and, from this perspective, various studies comparing the differences between consumer behaviors in different countries exist. Accordingly, this research, which uses online product reviews (OPRs) in order to analyze the cultural differences in consumer behavior comparatively by nationality, proposes to compare the U.S. and South Korea by selecting ten apps which were released in both countries in order to perform a sentimental analysis on the basis of star ratings and, based on those ratings, to interpret the sentiments in reviews. This research was carried out to determine whether, on the basis of ratings analysis, analysis of review contents for sentiment differences, analysis of LDA topic modeling, and co-occurrence analysis, actual differences in online reviews in South Korea and the U.S. exist due to cultural differences. The results confirm that the sentiments of reviews for both countries appear to be more negative than those of star ratings. Furthermore, while no great differences in high-raking review topics between the U.S. and South Korea were revealed through topic modeling and co-occurrence analyses, numerous differences in sentiment appeared-confirming that Koreans evaluated the mobile apps' specialized functions, while Americans evaluated the mobile apps in their entirety. This research reveals that differences in sentiments regarding mobile app reviews due to cultural differences between Koreans and Americans can be seen through sentiment analysis and topic modeling, and, through co-occurrence analysis, that they were able to examine trends in review-writing for each country.