• 제목/요약/키워드: Co-learning

검색결과 865건 처리시간 0.033초

CCSSM-CA와 미국 교과서에 제시된 분수의 연산 내용 분석 (An Analysis on the Contents of Fractional Operations in CCSSM-CA and its Textbooks)

  • 이대현
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제22권2호
    • /
    • pp.129-147
    • /
    • 2019
  • 본 연구에서는 CCSSM-CA와 그에 따른 미국 초등 교과서에 제시된 분수의 연산 내용을 분석하였다. 분석 결과, 분수를 단위분수나 분모가 같은 분수의 합으로 표현하게 하여 분수 개념과 연산을 연결 짓는 특징이 있었다. 또 분수의 곱셈에서는 곱하는 한 수의 크기에 기초하여 다른 수의 곱의 결과를 비교하도록 하거나, 나눗셈에서는 단위분수가 포함된 나눗셈을 먼저 다루고, 다양한 방법으로 계산을 하도록 제시하는 특징 등이 있었다.

T-EBOW를 이용한 취업알선 챗봇용 단문 분류 연구 (Short Text Classification for Job Placement Chatbot by T-EBOW)

  • 김정래;김한준;정경희
    • 인터넷정보학회논문지
    • /
    • 제20권2호
    • /
    • pp.93-100
    • /
    • 2019
  • 최근 각종 사업 분야에서 기업들은 기존 메신저 플랫폼에 인공지능을 더하여 다양한 환경을 대상으로 챗봇 서비스 지원에 주력하고 있다. 취업알선 분야의 기관에서도 취업상담 서비스 품질 제고와 상담 인력 해소를 위해 챗봇 서비스를 요구한다. 일반적인 텍스트 기반 챗봇은 입력된 사용자 문장을 학습된 문장으로 분류하여 적합한 답변을 사용자에게 제공한다. 최근 소셜 네트워크 서비스의 활성화 영향으로 챗봇에 입력되는 사용자 문장은 단문으로 입력되는 경향이 있다. 따라서 단문 분류의 성능향상은 챗봇 서비스의 성능향상에 기여할 수 있다. 본 연구는 취업알선 챗봇을 위한 단문 분류 강화를 위해 기존 연구의 개념 정보뿐만 아니라 번역문 정보를 활용하는 방법인 T-EBOW (Translation-Extended Bag Of Words)를 제안한다. T-EBOW를 기계학습 분류 모델에 적용한 단문 분류의 성능은 기존 방법에 비해 우수한 성능 평가 결과를 보였다.

A Best Effort Classification Model For Sars-Cov-2 Carriers Using Random Forest

  • Mallick, Shrabani;Verma, Ashish Kumar;Kushwaha, Dharmender Singh
    • International Journal of Computer Science & Network Security
    • /
    • 제21권1호
    • /
    • pp.27-33
    • /
    • 2021
  • The whole world now is dealing with Coronavirus, and it has turned to be one of the most widespread and long-lived pandemics of our times. Reports reveal that the infectious disease has taken toll of the almost 80% of the world's population. Amidst a lot of research going on with regards to the prediction on growth and transmission through Symptomatic carriers of the virus, it can't be ignored that pre-symptomatic and asymptomatic carriers also play a crucial role in spreading the reach of the virus. Classification Algorithm has been widely used to classify different types of COVID-19 carriers ranging from simple feature-based classification to Convolutional Neural Networks (CNNs). This research paper aims to present a novel technique using a Random Forest Machine learning algorithm with hyper-parameter tuning to classify different types COVID-19-carriers such that these carriers can be accurately characterized and hence dealt timely to contain the spread of the virus. The main idea for selecting Random Forest is that it works on the powerful concept of "the wisdom of crowd" which produces ensemble prediction. The results are quite convincing and the model records an accuracy score of 99.72 %. The results have been compared with the same dataset being subjected to K-Nearest Neighbour, logistic regression, support vector machine (SVM), and Decision Tree algorithms where the accuracy score has been recorded as 78.58%, 70.11%, 70.385,99% respectively, thus establishing the concreteness and suitability of our approach.

3차원 학습 데이터를 이용한 PIC 보의 강성 향상에 대한 연구 (Stiffness Enhancement of Piecewise Integrated Composite Beam using 3D Training Data Set)

  • 지승민;함석우;최진경;전성식
    • Composites Research
    • /
    • 제34권6호
    • /
    • pp.394-399
    • /
    • 2021
  • Piecewise Integrated Composite(PIC) 보는 구간 조합 복합재 보로 구간 마다 적층 각도 및 순서를 다르게 적용하여 보의 강성과 강도를 향상시킬 수 있는 복합재료 보의 새로운 개념이다. 본 연구에서는 보의 거동을 고려하기 어려운 2차원 학습 데이터를 대신하여 3차원 학습 데이터가 적용된 머신 러닝 모델을 이용한 PIC 보가 제안되었다. 학습 데이터 및 훈련 데이터 셋(Training Data Set)은 지정된 참조 요소에서 3축 특성 값(Stress Triaxiality Factor)을 추출하여 세 가지 하중 유형(인장, 압축 그리고 전단)으로 분류되어 구성되었고, 이에 따른 하이퍼파라미터(Hyperparameter)가 제안되었다. 이를 통하여 예측된 PIC 보로 유한 요소 해석이 진행되었고 3차원 학습 데이터로 예측된 모델이 처짐 변형량이 감소된 것이 확인되었다. 이를 통해 3차원 학습 데이터를 이용하는 것이 경쟁력있는 것으로 판단되었고 처짐 변형량의 감소로 타당성이 검증되었다.

광학센서를 이용한 강우정보 생산기법 개발 (최적 강우강도 기법을 이용한 실시간 강우정보 산정) (Development of Rainfall Information Production Technology Using Optical Sensors (Estimation of Real-Time Rainfall Information Using Optima Rainfall Intensity Technique))

  • 이병현;김병식;이영미;오청현;최정렬;전원혁
    • 한국환경과학회지
    • /
    • 제30권12호
    • /
    • pp.1101-1111
    • /
    • 2021
  • In this study, among the W-S-R(Wiper-Signal-Rainfall) relationship methods used to produce sensor-based rain information in real time, we sought to produce actual rainfall information by applying machine learning techniques to account for the effects of wiper operation. To this end, we used the gradient descent and threshold map methods for pre-processing the cumulative value of the difference before and after wiper operation by utilizing four sensitive channels for optical sensors which collected rain sensor data produced by five rain conditions in indoor artificial rainfall experiments. These methods produced rainfall information by calculating the average value of the threshold according to the rainfall conditions and channels, creating a threshold map corresponding to the 4 (channel) × 5 (considering rainfall information) grid and applying Optima Rainfall Intensity among the big data processing techniques. To verify these proposed results, the application was evaluated by comparing rainfall observations.

송아지 질병 결정 지원 모델 (A Calf Disease Decision Support Model)

  • 최동운;강윤정
    • 한국정보통신학회논문지
    • /
    • 제26권10호
    • /
    • pp.1462-1468
    • /
    • 2022
  • 송아지 질병 진단을 위해 사용되는 여러 데이터 중에서 분변은 질병 진단의 중요한 역할을 한다. 송아지 분변 이미지에서 형태, 색상, 질감으로 건강 상태를 알 수 있다. 건강 상태를 파악할 수 있는 분변 이미지는 분변 상태에 따라 정상 송아지 207개와 설사증 송아지 158개의 데이터를 전처리하여 사용하였다. 본 논문에서는 수집된 송아지 데이터 중에서 분변 변수의 이미지를 탐지하고 합성곱 네트워크 기술을 활용하여 질병 증상을 포함하고 있는 데이터 세트에 대해 CNN과 GLCM의 속성을 결합한 GLCM-CNN을 적용하여 이미지를 학습시켰다. CNN의 89.9% 정확도와 GLCM-CNN는 91.7%의 정확도를 보이는 GLCM-CNN는 1.8%의 높은 정확도를 나타내는 유의미한 차이가 있었다.

자연어 처리 기반 멀티 소스 이벤트 로그의 보안 심각도 다중 클래스 분류 (A Multiclass Classification of the Security Severity Level of Multi-Source Event Log Based on Natural Language Processing)

  • 서양진
    • 정보보호학회논문지
    • /
    • 제32권5호
    • /
    • pp.1009-1017
    • /
    • 2022
  • 로그 데이터는 정보 시스템의 주요 동작과 상태를 이해하고 판단하는 근거로 사용되어 왔으며, 여러 보안 분야 응용에서도 중요한 입력 데이터로 사용된다. 로그 데이터로부터 필요한 정보를 얻어 이를 근거로 의사 결정을 하고, 적절한 대응 방안을 취하는 것은 시스템을 보호하고 안정적으로 운영하는 데 있어 필수적인 요소이지만, 로그의 종류와 양이 폭발적으로 증가함에 따라 기존 도구들로는 효과적이고 효율적인 대응이 쉽지 않은 상황이다. 이에 본 연구에서는 자연어 처리 기반의 머신 러닝을 이용해 멀티 소스 이벤트 로그의 보안 심각도를 여러 단계로 분류하는 방법을 제안하였으며, 472,972건의 훈련 및 테스트 샘플을 이용하여 실험을 수행한 결과 99.59%의 정확도를 달성하였다.

Fermented Laminaria japonica improves working memory and antioxidant defense mechanism in healthy adults: a randomized, double-blind, and placebo-controlled clinical study

  • Kim, Young-Sang;Reid, Storm N.S.;Ryu, Jeh-Kwang;Lee, Bae-Jin;Jeon, Byeong Hwan
    • Fisheries and Aquatic Sciences
    • /
    • 제25권8호
    • /
    • pp.450-461
    • /
    • 2022
  • A randomized, double-blind, and placebo-controlled clinical study was used to determine the cognitive functions related to working memory (WM) and antioxidant properties of fermented Laminaria japonica (FLJ) on healthy volunteers. Eighty participants were divided into a placebo group (n = 40) and FLJ group (n = 40) that received FLJ (1.5 g/day) for 6 weeks. Memory-related blood indices (brain-derived neurotrophic factor, BDNF; angiotensin-converting enzyme; human growth hormone, HGH; insulin-like growth factor-1, IGF-1) and antioxidant function-related indices (catalase, CAT; malondialdehyde, MDA; 8-oxo-2'-deoxyguanosine, 8-oxo-dG; thiobarbituric acid reactive substances, TBARS) were determined before and after the trial. In addition, standardized cognitive tests were conducted using the Cambridge Neuropsychological Test Automated Batteries. Furthermore, the Korean Wechsler Adult Intelligence Scale (K-WAIS)-IV, and the Korean version of the Montreal Cognitive Assessment (MoCA-K) were used to assess the pre and post intake changes on WM-related properties. According to the results, FLJ significantly increased the level of CAT, BDNF, HGH, and IGF-1. FLJ reduced the level of TBARS, MDA, and 8-oxo-dG in serum. Furthermore, FLJ improved physical activities related to cognitive functions such as K-WAIS-IV, MoCA-K, Paired Associates Learning, and Spatial Working Memory compared to the placebo group. Our results suggest that FLJ is a potential candidate to develop functional materials reflecting its capability to induce antioxidant mechanisms together with WM-related indices.

문화기술(CT) 연구 동향 분석: 국가연구과제를 중심으로 (Analyzing the Trends of Culture Technology using National Research Projects)

  • 이범훈;전우진;금영정
    • 한국콘텐츠학회논문지
    • /
    • 제21권11호
    • /
    • pp.64-76
    • /
    • 2021
  • 디지털기술융합사회에서 문화기술의 중요도가 커지고 있지만, 이에 비해 문화기술의 동향을 정확하게 파악하고 분석하고자 하는 시도가 부족한 실정이다. 특히 문화기술의 경우 국가 차원에서 주도하여 발전해 왔으며, 이에 문화기술을 분석함에 있어 국가적 관점을 견지하는 것이 매우 중요하다. 따라서 본 연구는 국가연구과제를 바탕으로 문화기술 동향을 분석하고 향후 문화기술 발전에 대한 시사점을 제공하는 데 초점을 맞추었다. 본 연구는 국가과학기술정보서비스(NTIS)에서 문화기술 연구과제 데이터를 수집하여 연구내용에 대한 키워드 네트워크를 분석하고, 군집분석을 통해 문화기술 과제를 유형화하고 그 특성을 분석하였다. 분석 결과 문화기술은 정보지식에서 디지털콘텐츠, 문화미디어로 발전하고 최근 머신러닝 기술에 접목하여 활발하게 활용되고 있는 것으로 나타났다. 최근에는 코로나19의 사회적 환경의 변화로 비대면 온라인 콘텐츠에 대한 수요로 AR, VR 등 다양한 문화산업에 대한 연구로 발전하고 있는 것을 확인하였다. 이를 통해 본 연구는 문화기술을 이해하고 그 동향을 분석하여, 문화기술의 혁신 가능성을 확인하기 위한 중요한 단서를 제공하였다.

Computerized bone age estimation system based on China-05 standard

  • Yin, Chuangao;Zhang, Miao;Wang, Chang;Lin, Huihui;Li, Gengwu;Zhu, Lichun;Fei, Weimin;Wang, Xiaoyu
    • Advances in nano research
    • /
    • 제12권2호
    • /
    • pp.197-212
    • /
    • 2022
  • The purpose of this study is to develop an automatic software system for bone age evaluation and to evaluate its accuracy in testing and feasibility in clinical practice. 20394 left-hand radiographs of healthy children (2-18 years old) were collected from China Skeletal Development Survey data of 1998 and China Skeletal Development Survey data of 2005. Three experienced radiologists and China-05 standard maker jointly evaluate the stages of bone development and the reference bone age was determined by consensus. 1020 from 20394 radiographs were picked randomly as test set and the remaining 19374 radiographs as training set and validation set. Accuracy of the automatic software system for bone age assessment is evaluated in test set and two clinical test sets. Compared with the reference standard, the automatic software system based on RUS-CHN for bone age assessment has a 0.04 years old mean difference, ±0.40 years old in 95% confidence interval by single reading, a 85.6% percentage agreement of ratings, a 93.7% bone age accuracy rate, 0.17 years old of MAD, 0.29 years old of RMS; Compared with the reference standard, the automatic software system based on TW3-C RUS has a 0.04 years old mean difference, a ±0.38 years old in 95% confidence interval by single reading, a 90.9% percentage agreement of ratings, a 93.2% bone age accuracy rate, a 0.16 years of MAD, and a 0.28 years of RMS. Automatic software system, AI-China-05 showed reliably accuracy in bone age estimation and steady determination in different clinical test sets.