본 연구에서는 CCSSM-CA와 그에 따른 미국 초등 교과서에 제시된 분수의 연산 내용을 분석하였다. 분석 결과, 분수를 단위분수나 분모가 같은 분수의 합으로 표현하게 하여 분수 개념과 연산을 연결 짓는 특징이 있었다. 또 분수의 곱셈에서는 곱하는 한 수의 크기에 기초하여 다른 수의 곱의 결과를 비교하도록 하거나, 나눗셈에서는 단위분수가 포함된 나눗셈을 먼저 다루고, 다양한 방법으로 계산을 하도록 제시하는 특징 등이 있었다.
최근 각종 사업 분야에서 기업들은 기존 메신저 플랫폼에 인공지능을 더하여 다양한 환경을 대상으로 챗봇 서비스 지원에 주력하고 있다. 취업알선 분야의 기관에서도 취업상담 서비스 품질 제고와 상담 인력 해소를 위해 챗봇 서비스를 요구한다. 일반적인 텍스트 기반 챗봇은 입력된 사용자 문장을 학습된 문장으로 분류하여 적합한 답변을 사용자에게 제공한다. 최근 소셜 네트워크 서비스의 활성화 영향으로 챗봇에 입력되는 사용자 문장은 단문으로 입력되는 경향이 있다. 따라서 단문 분류의 성능향상은 챗봇 서비스의 성능향상에 기여할 수 있다. 본 연구는 취업알선 챗봇을 위한 단문 분류 강화를 위해 기존 연구의 개념 정보뿐만 아니라 번역문 정보를 활용하는 방법인 T-EBOW (Translation-Extended Bag Of Words)를 제안한다. T-EBOW를 기계학습 분류 모델에 적용한 단문 분류의 성능은 기존 방법에 비해 우수한 성능 평가 결과를 보였다.
International Journal of Computer Science & Network Security
/
제21권1호
/
pp.27-33
/
2021
The whole world now is dealing with Coronavirus, and it has turned to be one of the most widespread and long-lived pandemics of our times. Reports reveal that the infectious disease has taken toll of the almost 80% of the world's population. Amidst a lot of research going on with regards to the prediction on growth and transmission through Symptomatic carriers of the virus, it can't be ignored that pre-symptomatic and asymptomatic carriers also play a crucial role in spreading the reach of the virus. Classification Algorithm has been widely used to classify different types of COVID-19 carriers ranging from simple feature-based classification to Convolutional Neural Networks (CNNs). This research paper aims to present a novel technique using a Random Forest Machine learning algorithm with hyper-parameter tuning to classify different types COVID-19-carriers such that these carriers can be accurately characterized and hence dealt timely to contain the spread of the virus. The main idea for selecting Random Forest is that it works on the powerful concept of "the wisdom of crowd" which produces ensemble prediction. The results are quite convincing and the model records an accuracy score of 99.72 %. The results have been compared with the same dataset being subjected to K-Nearest Neighbour, logistic regression, support vector machine (SVM), and Decision Tree algorithms where the accuracy score has been recorded as 78.58%, 70.11%, 70.385,99% respectively, thus establishing the concreteness and suitability of our approach.
Piecewise Integrated Composite(PIC) 보는 구간 조합 복합재 보로 구간 마다 적층 각도 및 순서를 다르게 적용하여 보의 강성과 강도를 향상시킬 수 있는 복합재료 보의 새로운 개념이다. 본 연구에서는 보의 거동을 고려하기 어려운 2차원 학습 데이터를 대신하여 3차원 학습 데이터가 적용된 머신 러닝 모델을 이용한 PIC 보가 제안되었다. 학습 데이터 및 훈련 데이터 셋(Training Data Set)은 지정된 참조 요소에서 3축 특성 값(Stress Triaxiality Factor)을 추출하여 세 가지 하중 유형(인장, 압축 그리고 전단)으로 분류되어 구성되었고, 이에 따른 하이퍼파라미터(Hyperparameter)가 제안되었다. 이를 통하여 예측된 PIC 보로 유한 요소 해석이 진행되었고 3차원 학습 데이터로 예측된 모델이 처짐 변형량이 감소된 것이 확인되었다. 이를 통해 3차원 학습 데이터를 이용하는 것이 경쟁력있는 것으로 판단되었고 처짐 변형량의 감소로 타당성이 검증되었다.
In this study, among the W-S-R(Wiper-Signal-Rainfall) relationship methods used to produce sensor-based rain information in real time, we sought to produce actual rainfall information by applying machine learning techniques to account for the effects of wiper operation. To this end, we used the gradient descent and threshold map methods for pre-processing the cumulative value of the difference before and after wiper operation by utilizing four sensitive channels for optical sensors which collected rain sensor data produced by five rain conditions in indoor artificial rainfall experiments. These methods produced rainfall information by calculating the average value of the threshold according to the rainfall conditions and channels, creating a threshold map corresponding to the 4 (channel) × 5 (considering rainfall information) grid and applying Optima Rainfall Intensity among the big data processing techniques. To verify these proposed results, the application was evaluated by comparing rainfall observations.
송아지 질병 진단을 위해 사용되는 여러 데이터 중에서 분변은 질병 진단의 중요한 역할을 한다. 송아지 분변 이미지에서 형태, 색상, 질감으로 건강 상태를 알 수 있다. 건강 상태를 파악할 수 있는 분변 이미지는 분변 상태에 따라 정상 송아지 207개와 설사증 송아지 158개의 데이터를 전처리하여 사용하였다. 본 논문에서는 수집된 송아지 데이터 중에서 분변 변수의 이미지를 탐지하고 합성곱 네트워크 기술을 활용하여 질병 증상을 포함하고 있는 데이터 세트에 대해 CNN과 GLCM의 속성을 결합한 GLCM-CNN을 적용하여 이미지를 학습시켰다. CNN의 89.9% 정확도와 GLCM-CNN는 91.7%의 정확도를 보이는 GLCM-CNN는 1.8%의 높은 정확도를 나타내는 유의미한 차이가 있었다.
로그 데이터는 정보 시스템의 주요 동작과 상태를 이해하고 판단하는 근거로 사용되어 왔으며, 여러 보안 분야 응용에서도 중요한 입력 데이터로 사용된다. 로그 데이터로부터 필요한 정보를 얻어 이를 근거로 의사 결정을 하고, 적절한 대응 방안을 취하는 것은 시스템을 보호하고 안정적으로 운영하는 데 있어 필수적인 요소이지만, 로그의 종류와 양이 폭발적으로 증가함에 따라 기존 도구들로는 효과적이고 효율적인 대응이 쉽지 않은 상황이다. 이에 본 연구에서는 자연어 처리 기반의 머신 러닝을 이용해 멀티 소스 이벤트 로그의 보안 심각도를 여러 단계로 분류하는 방법을 제안하였으며, 472,972건의 훈련 및 테스트 샘플을 이용하여 실험을 수행한 결과 99.59%의 정확도를 달성하였다.
Kim, Young-Sang;Reid, Storm N.S.;Ryu, Jeh-Kwang;Lee, Bae-Jin;Jeon, Byeong Hwan
Fisheries and Aquatic Sciences
/
제25권8호
/
pp.450-461
/
2022
A randomized, double-blind, and placebo-controlled clinical study was used to determine the cognitive functions related to working memory (WM) and antioxidant properties of fermented Laminaria japonica (FLJ) on healthy volunteers. Eighty participants were divided into a placebo group (n = 40) and FLJ group (n = 40) that received FLJ (1.5 g/day) for 6 weeks. Memory-related blood indices (brain-derived neurotrophic factor, BDNF; angiotensin-converting enzyme; human growth hormone, HGH; insulin-like growth factor-1, IGF-1) and antioxidant function-related indices (catalase, CAT; malondialdehyde, MDA; 8-oxo-2'-deoxyguanosine, 8-oxo-dG; thiobarbituric acid reactive substances, TBARS) were determined before and after the trial. In addition, standardized cognitive tests were conducted using the Cambridge Neuropsychological Test Automated Batteries. Furthermore, the Korean Wechsler Adult Intelligence Scale (K-WAIS)-IV, and the Korean version of the Montreal Cognitive Assessment (MoCA-K) were used to assess the pre and post intake changes on WM-related properties. According to the results, FLJ significantly increased the level of CAT, BDNF, HGH, and IGF-1. FLJ reduced the level of TBARS, MDA, and 8-oxo-dG in serum. Furthermore, FLJ improved physical activities related to cognitive functions such as K-WAIS-IV, MoCA-K, Paired Associates Learning, and Spatial Working Memory compared to the placebo group. Our results suggest that FLJ is a potential candidate to develop functional materials reflecting its capability to induce antioxidant mechanisms together with WM-related indices.
디지털기술융합사회에서 문화기술의 중요도가 커지고 있지만, 이에 비해 문화기술의 동향을 정확하게 파악하고 분석하고자 하는 시도가 부족한 실정이다. 특히 문화기술의 경우 국가 차원에서 주도하여 발전해 왔으며, 이에 문화기술을 분석함에 있어 국가적 관점을 견지하는 것이 매우 중요하다. 따라서 본 연구는 국가연구과제를 바탕으로 문화기술 동향을 분석하고 향후 문화기술 발전에 대한 시사점을 제공하는 데 초점을 맞추었다. 본 연구는 국가과학기술정보서비스(NTIS)에서 문화기술 연구과제 데이터를 수집하여 연구내용에 대한 키워드 네트워크를 분석하고, 군집분석을 통해 문화기술 과제를 유형화하고 그 특성을 분석하였다. 분석 결과 문화기술은 정보지식에서 디지털콘텐츠, 문화미디어로 발전하고 최근 머신러닝 기술에 접목하여 활발하게 활용되고 있는 것으로 나타났다. 최근에는 코로나19의 사회적 환경의 변화로 비대면 온라인 콘텐츠에 대한 수요로 AR, VR 등 다양한 문화산업에 대한 연구로 발전하고 있는 것을 확인하였다. 이를 통해 본 연구는 문화기술을 이해하고 그 동향을 분석하여, 문화기술의 혁신 가능성을 확인하기 위한 중요한 단서를 제공하였다.
The purpose of this study is to develop an automatic software system for bone age evaluation and to evaluate its accuracy in testing and feasibility in clinical practice. 20394 left-hand radiographs of healthy children (2-18 years old) were collected from China Skeletal Development Survey data of 1998 and China Skeletal Development Survey data of 2005. Three experienced radiologists and China-05 standard maker jointly evaluate the stages of bone development and the reference bone age was determined by consensus. 1020 from 20394 radiographs were picked randomly as test set and the remaining 19374 radiographs as training set and validation set. Accuracy of the automatic software system for bone age assessment is evaluated in test set and two clinical test sets. Compared with the reference standard, the automatic software system based on RUS-CHN for bone age assessment has a 0.04 years old mean difference, ±0.40 years old in 95% confidence interval by single reading, a 85.6% percentage agreement of ratings, a 93.7% bone age accuracy rate, 0.17 years old of MAD, 0.29 years old of RMS; Compared with the reference standard, the automatic software system based on TW3-C RUS has a 0.04 years old mean difference, a ±0.38 years old in 95% confidence interval by single reading, a 90.9% percentage agreement of ratings, a 93.2% bone age accuracy rate, a 0.16 years of MAD, and a 0.28 years of RMS. Automatic software system, AI-China-05 showed reliably accuracy in bone age estimation and steady determination in different clinical test sets.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.