• 제목/요약/키워드: Co-learning

검색결과 865건 처리시간 0.028초

Slope stability analysis using black widow optimization hybridized with artificial neural network

  • Hu, Huanlong;Gor, Mesut;Moayedi, Hossein;Osouli, Abdolreza;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • 제29권4호
    • /
    • pp.523-533
    • /
    • 2022
  • A novel metaheuristic search method, namely black widow optimization (BWO) is employed to increase the accuracy of slope stability analysis. The BWO is a recently-developed optimizer that supervises the training of an artificial neural network (ANN) for predicting the factor of safety (FOS) of a single-layer cohesive soil slope. The designed slope bears a loaded foundation in different distances from the crest. A sensitivity analysis is conducted based on the number of active individuals in the BWO algorithm, and it was shown that the best performance is acquired for the population size of 40. Evaluation of the results revealed that the capability of the ANN was significantly enhanced by applying the BWO. In this sense, the learning root mean square error fell down by 23.34%. Also, the correlation between the testing data rose from 0.9573 to 0.9737. Therefore, the postposed BWO-ANN can be promisingly used for the early prediction of FOS in real-world projects.

Tri-training algorithm based on cross entropy and K-nearest neighbors for network intrusion detection

  • Zhao, Jia;Li, Song;Wu, Runxiu;Zhang, Yiying;Zhang, Bo;Han, Longzhe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권12호
    • /
    • pp.3889-3903
    • /
    • 2022
  • To address the problem of low detection accuracy due to training noise caused by mislabeling when Tri-training for network intrusion detection (NID), we propose a Tri-training algorithm based on cross entropy and K-nearest neighbors (TCK) for network intrusion detection. The proposed algorithm uses cross-entropy to replace the classification error rate to better identify the difference between the practical and predicted distributions of the model and reduce the prediction bias of mislabeled data to unlabeled data; K-nearest neighbors are used to remove the mislabeled data and reduce the number of mislabeled data. In order to verify the effectiveness of the algorithm proposed in this paper, experiments were conducted on 12 UCI datasets and NSL-KDD network intrusion datasets, and four indexes including accuracy, recall, F-measure and precision were used for comparison. The experimental results revealed that the TCK has superior performance than the conventional Tri-training algorithms and the Tri-training algorithms using only cross-entropy or K-nearest neighbor strategy.

Usage of coot optimization-based random forests analysis for determining the shallow foundation settlement

  • Yi, Han;Xingliang, Jiang;Ye, Wang;Hui, Wang
    • Geomechanics and Engineering
    • /
    • 제32권3호
    • /
    • pp.271-291
    • /
    • 2023
  • Settlement estimation in cohesion materials is a crucial topic to tackle because of the complexity of the cohesion soil texture, which could be solved roughly by substituted solutions. The goal of this research was to implement recently developed machine learning features as effective methods to predict settlement (Sm) of shallow foundations over cohesion soil properties. These models include hybridized support vector regression (SVR), random forests (RF), and coot optimization algorithm (COM), and black widow optimization algorithm (BWOA). The results indicate that all created systems accurately simulated the Sm, with an R2 of better than 0.979 and 0.9765 for the train and test data phases, respectively. This indicates extraordinary efficiency and a good correlation between the experimental and simulated Sm. The model's results outperformed those of ANFIS - PSO, and COM - RF findings were much outstanding to those of the literature. By analyzing established designs utilizing different analysis aspects, such as various error criteria, Taylor diagrams, uncertainty analyses, and error distribution, it was feasible to arrive at the final result that the recommended COM - RF was the outperformed approach in the forecasting process of Sm of shallow foundation, while other techniques were also reliable.

딥러닝 기반 1인 가구 범죄 예방을 위한 긴급 상황 인식 스마트 도어록 개발 (Development of Smart Door Lock with Emergency Situation Recognition to Prevent Crime in Single Household Based on Deep Learning)

  • 이진선;한지은;유현아;박주연;김형훈;심현민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.251-254
    • /
    • 2020
  • 매년 1인 가구를 대상으로 한 범죄가 증가하고 있다. 이에 따라 지문인식, 스마트키와 같은 도어록 제품들이 출시되었지만 오히려 범죄에 악용되는 사례들이 발생하였다. 본 논문에서는 얼굴인식장치(face identifier, FI)를 통해 객체를 인식하고, 원격 도어록 관리자(remote door lock manager, RDM)를 통해 잠금제어부(locking control unit, LCU)를 관리하는 긴급 상황 인식 스마트 도어록을 제안한다. 사용자의 얼굴을 얼마나 빠르고 정확하게 인식하는지 속도와 신뢰도에 대한 테스트를 진행하였고, 긴급 상황 시 사용자가 안전하게 집으로 들어갈 수 있음을 확인하였다. 본 제품을 통해 주거 침입, 스토킹 등 1인 가구 대상 범죄율과 도어록 악용 범죄율이 낮아질 것으로 사료된다.

컨볼루션 신경망에 기반한 비디오 월 컨트롤러의 블랙 스크린 감지 (Detection of Black Screen in Video Wall Controller Using CNN)

  • 김성진
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.524-526
    • /
    • 2021
  • 최근에 비디오 월 컨트롤러 시장이 빠르게 성장하면서 지금까지는 크게 이슈화 되지 않았던 문제들이 표면화 되고 있는데, 비디오 월 컨트롤러에서 블랙 스크린이 발생하는 현상도 그 중 하나일 것이다. 블랙 스크린은 비디오 월 컨트롤러의 멀티 스크린에 정상적인 영상이 아닌 블랙 스크린이 표출되는 현상이다. 블랙 스크린의 발생을 인지하고 해결하기 위해서는 인간의 개입이 불가피 하지만 운영자가 24시간 멀티 스크린을 모니터링 하는 것은 사실상 불가능하다. 따라서 본 논문에서는 비디오 월 컨트롤러에서 블랙 스크린이 발생하는 것을 자동으로 감지하는 모델을 제안한다. 블랙 스크린 감지 모델은 이미지 분류에 널리 활용되고 있는 컨볼루션 신경망으로 블랙 스크린의 발생 여부를 감지한다.

  • PDF

Analysis of University Unification Education Research Trends Using Text Network Analysis and Topic Modeling

  • Do-Young LEE
    • 웰빙융합연구
    • /
    • 제6권4호
    • /
    • pp.27-31
    • /
    • 2023
  • Purpose: This study analyzed papers identified by entering the two keywords 'unification education' and 'university' during research from 2013 to 2022 in order to identify trends and key concepts in unification education research at domestic universities. Research design, data, and methodology: The study analyzed 224 papers, excluding those on primary, middle, and high school unification education, as well as unrelated and duplicate papers. The analysis included developing a co-occurrence network of keywords, utilizing topic modeling to categorize research types, and confirming visualizations such as word clouds and sociograms. Results: In the final analysis, the research identified 1,500 keywords, with notable ones like 'Korea,' 'education,' 'unification.' Centrality analysis, measuring influence through connected keywords, revealed that 'Korea,' 'education,' 'north,' and 'unification' held significant positions. Keywords with high centrality compared to their frequency included 'learning,' 'development,' 'training,' 'peace,' and 'language,' in that order. Conclusions: This study investigated trends and structures in university-level unification education by analyzing papers identified with the keywords 'unification education' and 'university.' The use of keyword network analysis aimed to elucidate patterns and structures in university-level unification education. The significance of the study lies in offering foundational data for future research directions in the field of unification education at universities.

Density Change Adaptive Congestive Scene Recognition Network

  • Jun-Hee Kim;Dae-Seok Lee;Suk-Ho Lee
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.147-153
    • /
    • 2023
  • In recent times, an absence of effective crowd management has led to numerous stampede incidents in crowded places. A crucial component for enhancing on-site crowd management effectiveness is the utilization of crowd counting technology. Current approaches to analyzing congested scenes have evolved beyond simple crowd counting, which outputs the number of people in the targeted image to a density map. This development aligns with the demands of real-life applications, as the same number of people can exhibit vastly different crowd distributions. Therefore, solely counting the number of crowds is no longer sufficient. CSRNet stands out as one representative method within this advanced category of approaches. In this paper, we propose a crowd counting network which is adaptive to the change in the density of people in the scene, addressing the performance degradation issue observed in the existing CSRNet(Congested Scene Recognition Network) when there are changes in density. To overcome the weakness of the CSRNet, we introduce a system that takes input from the image's information and adjusts the output of CSRNet based on the features extracted from the image. This aims to improve the algorithm's adaptability to changes in density, supplementing the shortcomings identified in the original CSRNet.

False-Negative Results of Real-Time Reverse-Transcriptase Polymerase Chain Reaction for Severe Acute Respiratory Syndrome Coronavirus 2: Role of Deep-Learning-Based CT Diagnosis and Insights from Two Cases

  • Dasheng Li;Dawei Wang;Jianping Dong;Nana Wang;He Huang;Haiwang Xu;Chen Xia
    • Korean Journal of Radiology
    • /
    • 제21권4호
    • /
    • pp.505-508
    • /
    • 2020
  • The epidemic of 2019 novel coronavirus, later named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still gradually spreading worldwide. The nucleic acid test or genetic sequencing serves as the gold standard method for confirmation of infection, yet several recent studies have reported false-negative results of real-time reverse-transcriptase polymerase chain reaction (rRT-PCR). Here, we report two representative false-negative cases and discuss the supplementary role of clinical data with rRT-PCR, including laboratory examination results and computed tomography features. Coinfection with SARS-COV-2 and other viruses has been discussed as well.

A DQN-based Two-Stage Scheduling Method for Real-Time Large-Scale EVs Charging Service

  • Tianyang Li;Yingnan Han;Xiaolong Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권3호
    • /
    • pp.551-569
    • /
    • 2024
  • With the rapid development of electric vehicles (EVs) industry, EV charging service becomes more and more important. Especially, in the case of suddenly drop of air temperature or open holidays that large-scale EVs seeking for charging devices (CDs) in a short time. In such scenario, inefficient EV charging scheduling algorithm might lead to a bad service quality, for example, long queueing times for EVs and unreasonable idling time for charging devices. To deal with this issue, this paper propose a Deep-Q-Network (DQN) based two-stage scheduling method for the large-scale EVs charging service. Fine-grained states with two delicate neural networks are proposed to optimize the sequencing of EVs and charging station (CS) arrangement. Two efficient algorithms are presented to obtain the optimal EVs charging scheduling scheme for large-scale EVs charging demand. Three case studies show the superiority of our proposal, in terms of a high service quality (minimized average queuing time of EVs and maximized charging performance at both EV and CS sides) and achieve greater scheduling efficiency. The code and data are available at THE CODE AND DATA.

Application of a comparative analysis of random forest programming to predict the strength of environmentally-friendly geopolymer concrete

  • Ying Bi;Yeng Yi
    • Steel and Composite Structures
    • /
    • 제50권4호
    • /
    • pp.443-458
    • /
    • 2024
  • The construction industry, one of the biggest producers of greenhouse emissions, is under a lot of pressure as a result of growing worries about how climate change may affect local communities. Geopolymer concrete (GPC) has emerged as a feasible choice for construction materials as a result of the environmental issues connected to the manufacture of cement. The findings of this study contribute to the development of machine learning methods for estimating the properties of eco-friendly concrete, which might be used in lieu of traditional concrete to reduce CO2 emissions in the building industry. In the present work, the compressive strength (fc) of GPC is calculated using random forests regression (RFR) methodology where natural zeolite (NZ) and silica fume (SF) replace ground granulated blast-furnace slag (GGBFS). From the literature, a thorough set of experimental experiments on GPC samples were compiled, totaling 254 data rows. The considered RFR integrated with artificial hummingbird optimization (AHA), black widow optimization algorithm (BWOA), and chimp optimization algorithm (ChOA), abbreviated as ARFR, BRFR, and CRFR. The outcomes obtained for RFR models demonstrated satisfactory performance across all evaluation metrics in the prediction procedure. For R2 metric, the CRFR model gained 0.9988 and 0.9981 in the train and test data set higher than those for BRFR (0.9982 and 0.9969), followed by ARFR (0.9971 and 0.9956). Some other error and distribution metrics depicted a roughly 50% improvement for CRFR respect to ARFR.