• Title/Summary/Keyword: Co-incubated

Search Result 355, Processing Time 0.03 seconds

Comparison of CYP 3A4 metabolism between DA-8159 and Sildenafil in vitro and in vivo

  • Park, Kyung-Jin;Youn, Hae-Sun;Shim, Hyun-Joo;Kim, Soon-Hoe;Yoo, Moo-Hi;Kim, Won-Bae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.253.1-253.1
    • /
    • 2002
  • DA-8159 is a new PDEV inhibitor, synthesized by Dong-A Pharm, as an oral agent to treat male erectile dysfunction. DA-8159 and sildenafil are mainly metabolized by cytochrome P450 enzyme CYP 3A4. In this study. we compared the metabolism of DA-8159 with sildenafil in vitro and in vivo. First, we quantified the remaining gatio of original compound, DA-8159 and sidenafil., after we incubated drugs for 30 minutes with human liver microsome cytochrome P 450 3A4. (omitted)

  • PDF

THE EFFECTS OF GINGIVAL FIBROBLAST ON THE MINERALIZATION OF THE RAT BONE MARROW STROMAL CELL (백서 골수세포의 석회화 과정에 미치는 치은 섬유아세포의 영향)

  • Kim, Seuk-Yong;Kwon, Young-Hyuk;Park, Joon-Bong
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.210-221
    • /
    • 1995
  • The purpose of this study was performed to investigate the mineralization and differentiation of osteobalsts for bone regeneration in vitro and the effect of rate of the composition in periodontal cells on mineralization. For this study, healthy gingival tissues were surgically obtained from the patients during 1st premolar extraction for the purposes of orthodontic treament. Gingival tissue was washed several time with Phosphate buffered saline contained high concentration of antibiotics and antifungal agent, and cultured in Dulbecco's Modified Eagle's Medium(DMEM, Gibco, U.S.A.). Every cell were cultured in state at $37^{\circ}C$, 100% of humidity, 5% of $CO_2$ incubator. Bone marrow stromal cells were isolated from 5-clay-old rat femur with using medium irrigation mathod by syringe. Cell suspension medium were centrifuged at 1500 rpm for 5 min and then cultured in the petri dish. Two kinds of cell were freezed and stocked in the liquid nitrogen tank until experiment. Cell were incubated into the 24 multi-well plate with $5{\times}10^4$cell/well of medium at $37^{\circ}C$, 100% of humidity 5% $CO_2$ incubator for 24 hours. After discarded of the supernatent of medium, O.5ml of medium were reapplied and incubated. And counted the number of cell using the hemocytometer and inverted light microscope. We have measured the number of mineralized nodule with using Alizarin red S. staining in microscope. Furthermore every cell were observed the morphological change between every rate of co-culture of the two kinds of cell. The results were as follows; The rate of proliferation of co-culture cell revealed high rate tendency compared the bone marrow stromal cell only and low growth rate to compared with gingival fibroblast only. The tendency of formation of the mineralized nodule were observed dose-depend pattern of bone marrow stromal cell. It is concluded that the gingival fibroblast may inhibit the formation of mineralized nodule in the culture of the bone marrow stromal cell.

  • PDF

Effects of Defaunation on Fermentation Characteristics and Methane Production by Rumen Microbes In vitro When Incubated with Starchy Feed Sources

  • Qin, W.Z.;Li, C.Y.;Kim, J.K.;Ju, J.G.;Song, Man-K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1381-1388
    • /
    • 2012
  • An in vitro experiment was conducted to examine the effects of defaunation (removal of protozoa) on ruminal fermentation characteristics, $CH_4$ production and degradation by rumen microbes when incubated with cereal grains (corn, wheat and rye). Sodium lauryl sulfate as a defaunation reagent was added into the culture solution at a concentration of 0.000375 g/ml, and incubated anaerobically for up to 12 h at $39^{\circ}C$. Following defaunation, live protozoa in the culture solution were rarely observed by microscopic examination. A difference in pH was found among grains regardless of defaunation at all incubation times (p<0.01 to 0.001). Defaunation significantly decreased pH at 12 h (p<0.05) when rumen fluid was incubated with grains. Ammonia-N concentration was increased by defaunation for all grains at 6 h (p<0.05) and 12 h (p<0.05) incubation times. Total VFA concentration was increased by defaunation at 6 h (p<0.05) and 12 h (p<0.01) for all grains. Meanwhile, defaunation decreased acetate and butyrate proportions at 6 h (p<0.05, p<0.01) and 12 h (p<0.01, p<0.001), but increased the propionate proportion at 3 h, 6 h and 12 h incubation (p<0.01 to 0.001) for all grains. Defaunation increased in vitro effective degradability of DM (p<0.05). Production of total gas and $CO_2$ was decreased by defaunation for all grains at 1 h (p<0.05, p<0.05) and then increased at 6 h (p<0.05, p<0.05) and 12 h (p<0.05, p<0.05). $CH_4$ production was higher from faunation than from defaunation at all incubation times (p<0.05).

The Effect of Co-culture and Oxygen Concentration on In Virto Fertilization of Follicular Oocytes in Korean Native Cattle (공배양 및 산소농도가 한우 난포란의 체외발생에 미치는 영향)

  • 이재관;윤준진;황성수;윤종택;김창근;정영채
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.1
    • /
    • pp.43-50
    • /
    • 1998
  • The effect of oxygen tension on embryonic development in co-culture was evaluated from the standpoint of the reduction of dissolved oxygen concentration by the oxygen consumption of feeder cells. Three co-culture systems using bovine oviductal epitherial cells (BOEC), African green monkey kidney cells (Vero cells) or buffalo rat liver cells (BRLC) have been compared in terms of development of bovine embryos derived from oocytes matured and fertilized in vitro. Among the co-cultured embryo, Vero cells su, pp.rted the highest developmental rate (29%) and the other two showed the similar rates. When the co-cultures were incubated in three different oxygen tension such as 5, 10, 20% oxygen atmosphere, embryos co-cultured with Vero cells at 10%-O2 resulted in the highest percentage of development. From the measurement of oxygen consumption of feeder cells, BRLC consumed 1.38 10-10 mg-O2/min/cell which was higher than 0.94 10-10 and 0.26 10-10mg-O2/min/cell for Vero cells and BOEC, respectively. Based on the oxygen consumption data, the phenomena of optimum oxygen tension required in embryo development in vitro has been analyzed, and we suggested that gas phase oxygen concentration, oxygen consumption rate of feeder cells and the number of feeder cells should be considered for the design of optimal co-culture system for effective fertilization of embryos in vitro.

  • PDF

Microplate Assay Measurement of Cytochrome P450-Carbon Monoxide Complexes

  • Choi, Suk-Jung;Kim, Mi-Ra;Kim, Sung-Il;Jeon, Joong-Kyun
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.332-335
    • /
    • 2003
  • Cytochrome P450 in microsomes can be quantitated using the characteristic 450 nm absorption peak of the CO adduct of reduced cytochrome P450. We developed a simple microplate assay method that is superior to previous methods. Our method is less laborious, suitable for analyzing many samples, and less sensitive to sample aggregation. Microsome samples in microplate wells were incubated in a CO chamber rather than bubbled with CO gas, and then reduced with sodium hydrosulfite solution. This modification allowed a reliable and reproducible assay by effectively eliminating variations between estimations.

MEASUREMENT OF SYNTHESIS RATE OF LONG-CHAIN ACYL-COENZYME A ESTER IN BOVINE LIVER BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY

  • Mitsuhashi, T.;Mitsumoto, M.;Yamashita, Y.;Ozawa, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.2
    • /
    • pp.99-106
    • /
    • 1988
  • A high performance liquid chromatographic procedure is described for the direct determination of the picomole amount of palmitoyl-Coenzyme A and stearoyl-Coenzyme A, using a stainless steel column packed with C-18 derivatized porous silica ($5{\mu}m$), an isocratic elution with a mixture of 33 mM $KH_2PO_4$/acetonitrile as a mobile phase and a UV detector. The long-chain acyl-Coenzyme A esters were determined in incubated microsomal fractions of a bovine liver to demonstrate the utility of this method for monitoring acyl-CoA synthesis in biological samples. The reaction rate of palmitate was higher than that of stearate. After a 60 minute incubation period, the generated amount of palmitoyl-Coenzyme A and stearoyl-Coenzyme A were approximately 70 and 20 n mol/mg micresomal protein, respectively. The advantage of this method are in that no decomposition of the CoA esters is involved, while the constituent molecular species is detected.

Oxidative Coupling of Herbicide Propanil and Its Metabolite, DCA(3,4-dichloroaniline) to Humic Monomers (제초제 Propanil 및 그 분해산물인 DCA(3,4-dichloroaniline)와 Humic Monomer들과의 산화적 짝지움반응)

  • Kwon, Tae-Dong;Kim, Jang-Eok
    • Applied Biological Chemistry
    • /
    • v.41 no.5
    • /
    • pp.384-389
    • /
    • 1998
  • The herbicide propanil and its metabolite, DCA were incubated with oxidative catalysts in the presence or absence of humic monomers to evaluate the incorporation of them into humic substances. Propanil and DCA underwent little or no transformation by oxidatve catalysts in the absence of humic monomers. In the presence of humic monomers, the most effective co-substrate for transformation of propanil was syringic acid by laccase and HRP, that of DCA was catechol by laccase and HRP, and protocatechuic acid by birnessite. The transformation of DCA was the highest when it was incubated with catechol at pH 8.0 during 24 hrs by laccase, and with catechol at pH 3.0 during 2 hrs by HRP, and with protocatechuic acid at pH 5.0 during 2 hrs by birnessite. The DCA transformation increased with increasing concentration of humic monomers. The transformation of DCA was increased with about 5 times when it was incubated with lactase and birnessite together than lactase alone, but that of it was not effected when it was incubated with HRP and birnessite together. When DCA was incubated with dissolved organic carbon in the presence of oxidative catalysts, the transformation of it was not increased by laccase and birnessite but increased by HRP.

  • PDF

Studies on the NO Production and Expression Induction Effect of NOS Gene by Salviae Radix (단삼에 의한 NO 생성 및 NOS 유전자의 발현 유도 효과에 관한 연구)

  • 조현주;원진희;문구;문석재;유기원;유봉하
    • The Journal of Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.20-30
    • /
    • 2000
  • Objective : This experiment was performed in order to study the effect of an aqueous extract of Salviae radix root(SRRAE) on NO production and NOS gene induction from macrophages Methods : To investigate dose-dependent effects of SRRAE for NO release on the $rIFN-{\gamma}-treated$ macrophages, the cells were incubated for 6 hrs in a medium containing $rIFN-{\gamma}$ (5 U/ml), stimulated with SRRAE and incubated in a CO2 incubator. The cells were treated with 5 U/ml $rIFN-{\gamma}$ plus 100 g/ml of SRRAE, Then, the cells were incubated with various concentrations of NGMMA at $37^{\circ}C$ for 48 hrs, Results : SRRAE had no effect on NO production by itself, whereas recombinant $interferon-{\gamma}(rIFN-{\gamma})$ alone showed modest activity, When SRRAE was used in combination with $rIFN-{\gamma}$, there was a marked cooperative induction of NO production in a dose-dependent manner. The optimal effect of SRRAE on NO production was shown at 6hrs after treatment with $rIFN-{\gamma}$. The SRRAE-induced production of NO was inhibited by NG-monomethyl- L-arginine(NGMMA) and arginase. $rIFN-{\gamma}$ in combination with SRRAE showed a marked increase of the expression of the inducible NOS(iNOS) gene. In addition, the effect of SRRAE was mainly dependent on the SRRAE-induced tumor necrosis $factor-{\alpha}(TNF-{\alpha})$ secretion. Conclusions : SRRAE induces NO production from macrophages as a result of SRRAE-induced $TNF-{\alpha}$ secretion. SRRAE may provide a second signal for synergistic induction of NO production in macrophages already induced to express iNOS gene by $rIFN-{\gamma}$.

  • PDF

Effect of Bovine Oviductal Epithelial Cell(BOEC) Conditioned Medium on In Vitro Development of Bovine Embryos Fertilized In Vitro (난관상피세포 Conditioned Medium이 체외수정된 소 수정란의 체외 발달에 미치는 영향)

  • 오종훈;김동훈;정형민;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.1
    • /
    • pp.69-74
    • /
    • 1993
  • This study was investigated to examine the effect of conditioned medium from bovine oviductal cell(BOEC) in the co-culture system with BOEC on in vitro development of in vitro produced bovine embryos. Oocyte-cumulus complexes were cultured for 24 hrs in TCM-199 supplemented with 10% fetal calf serum, 1$\mu\textrm{g}$/ml FSH and 21U hCG, 1$\mu\textrm{g}$/ml oestradiol-17$\beta$ at 39$^{\circ}C$ under 5% CO2 in air. In vitro fertilization was performed with epididymal sperm and heparin (10$\mu\textrm{g}$/ml, 15min.) or caffeine(2.5mM)-treated spermatozoa. Oocytes were incubated with 1$\times$106 spermatozoa/ml for 18 hrs and then cultured in various culture system for 7 days. The development rates of 16-cell or blastocyst stages were recorded on 4, 7 days, respectively, after incubating. The proportions ofembryonic development into molulae and blastocysts were higher in cumulus cell co-culture(23.4%) and BOEC co-culture(34.3%) than in M199-FCS(6.1%). Similarily, the development rates into molulae and blastocysts were significantly higher in BOEC-conditioned medium than those in M199-FCS. Therefore, it is suggested that BOEC co-culture and BOEC conditioned medium increase significantly the development of in vitro produced bovine embryos in in vitro system.

  • PDF

Application of the Combination of Soybean Lecithin and Whey Protein Concentrate 80 to Improve the Bile Salt and Acid Tolerance of Probiotics

  • Gou, Xuelei;Zhang, Libo;Zhao, Shiwei;Ma, Wanping;Yang, Zibiao
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.840-846
    • /
    • 2021
  • To improve the bile salt and acid tolerance of probiotics against gastrointestinal stresses, we investigated the effects of soybean lecithin and whey protein concentrate (WPC) 80 on the bile salt tolerance of Lacticaseibacillus paracasei L9 using a single-factor methodology, which was optimized using response surface methodology (RSM). The survival rate of L. paracasei L9 treated with 0.3% (w/v) bile salt for 2.5 h, and combined with soybean lecithin or WPC 80, was lower than 1%. After optimization, the survival rate of L. paracasei L9 incubated in 0.3% bile salt for 2.5 h reached 52.5% at a ratio of 0.74% soybean lecithin and 2.54% WPC 80. Moreover, this optimized method improved the survival rate of L. paracasei L9 in low pH condition and can be applied to other lactic acid bacteria (LAB) strains. Conclusively, the combination of soybean lecithin and WPC 80 significantly improved the bile salt and acid tolerance of LAB. Our study provides a novel approach for enhancing the gastrointestinal tolerance of LAB by combining food-derived components that have different properties.