• Title/Summary/Keyword: Co-flow burner

Search Result 84, Processing Time 0.026 seconds

Nitric Oxide and Carbon Monoxide Emission from a Premixed Flame Stabilized in a Porous Ceramic Matrix Burner (세라믹 매트릭스 버너에 형성된 예혼합 화염의 NOx 및 CO 배출특성)

  • Jeong, Jong-Su;Lee, Gyo-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3243-3250
    • /
    • 1996
  • Emission characteristics of nitric oxides and carbon monoxide from a porous media combustor has been experiment studied. The relationship between the change of flame shape and emission has also been examined. As the equivalence ratio decreases, the flame shape on the ceramic matrix plate changes from a diffusion flame, R(radiant)-type flame, to B(Blue)-type flame. With large fuel flow rate, R-type flame turns to be two dimensional R-II type flame around the equivalence of 0.7. Carbon monoxide emission increases very rapid with decreasing equivalence ratio. It changes a lot from some 10 ppm to 100-10,000 ppm with the change of flame type from R-I to R-II type. Nitric oxide emission from the premixed burner is less than 25 ppm over all range of fuel flow rate, which is less than 20% of NOx emission from conventional gas burners.

Effects of CO2 on Heat Transfer from Oxygen-Enriched Hydrogen Flame (이산화탄소가 수소 산소부화 화염의 열전달에 미치는 영향)

  • Lee, Chang-Yeop;Choi, Joon-Won;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.937-944
    • /
    • 2004
  • An experimental study has been conducted to evaluate the effects of $CO_2$ on heat transfer from oxygen-enriched hydrogen flame. Experiments were performed on flames stabilized by a co-flow swirl burner, which was mounted on top of the furnace. Five different oxidizer compositions were prepared by replacing $N_2$ with $CO_2$. In a steady state, the total as well as radiative heat flux from the flame to the wall of furnace have been measured using a heat flux meter. Temperature distribution in furnace also has been measured and compared. By increasing $CO_2$ proportion in the oxidizer, the convection played a more significant role rather than radiation. Overall temperature in the furnace was seen to be decreased, while the total heat flux has increased.

Behavior of the Edge Flame on Flame Extinction in Buoyancy minimized Methane-Air Non-premixed Counter Triple Co-flow Flames (부력을 최소화한 대향류 삼축 메탄-공기 비예혼합 화염 소화에서 에지화염의 거동)

  • Park, Jin Wook;Park, Jeong;Yun, Jin-Han;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.81-84
    • /
    • 2014
  • A Experimental study on flame extinction behavior was investigated using He curtain flow with counter triple co-flow burner. Buoyancy force was suppressed up to a microgravity level of $10^{-2}-10^{-3}g$ by using He curtain flow. The stability maps were provided with a functional dependency of diluent mole fraction and global strain rate to clarify the differences in flame extinction behavior. The flame extinction curves had C-shapes at various global strain rates. The oscillation and extinction modes were different each other in terms of the global strain rate, and the flames extinction modes could be classified into five modes such as (I) and (II): an extinction through the shrinkage of the outmost edge flame forward the flame center after self-excitation and without self-excitation, respectively, (III): an extinction through rapid advancement of a flame hole while the outmost edge flame is stationary, (IV): self-excitation occurs in the outermost edge flame and the center edge flame and then a donut shaped flame is formed and/or the flame is entirely extinguished, (V): shrinkage of the outermost edge flame without self-excitation followed by shrinkage or survival of the center flame. These oscillation and extinction modes could be identified well to the behavior of edge flame. The result also showed that the edge flame was influenced significantly by the conductive heat losses to the flame center or ambient He curtain flow.

  • PDF

Numerical Study on the Flow and Combustion Characteristics in Swirl-Premix Burners (스월 예혼합 버너의 유동 및 연소특성에 관한 수치적 연구)

  • Lim, Jun-Seok;Lee, Jong-Hyeok;Baek, Gwang-Min;Cho, Ju-Hyeong;Kim, Han-Seok;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.103-110
    • /
    • 2012
  • The flow field, fuel-air mixing, and behaviors of turbulent flames have been investigated using the large eddy simulation (LES) numerical technique in a premixed swirl combustor equipped with EV double cone burners. Recirculation zones are generated by the swirl burner, and lean premixed flames are formed within a distance of 0.2 m from the tip of the burner. NOx emission of 0.46 ppm is predicted at 1 atm and an air/fuel ratio of 38.7. However, most of the CO generated in a flame front continues to be oxidized as it moves toward the exit, and CO emission of 5.45 ppm is predicted at the exit. The NOx emission can be reduced by decreasing the pressure and air/fuel ratio. The characteristics of NOx emission have been investigated through RANS simulations for various fuel injection types, and it is found thereby that five-lance-hole injection produces the lowest NOx emission rate.

Measurement of Heat Release Rate by Carbon Dioxide Generation Method for Methane Fire (메탄화재의 이산화탄소 생성법에 의한 화재발열량 측정)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.1-6
    • /
    • 2020
  • The energy released by various burning material has a wide range of its magnitude and transient characteristics, the measurement of the heat release rate(HRR) has been considered as one of the most challenging issue among the parameters related to fire. This study compares the measured HRR calculated by the oxygen consumption (OC) method and the carbon dioxide generation (CDG) method using a laboratory-scale fire calorimeter. The feasibility of the CDG method is examined by analyzing the relative error. The relationship between the oxygen depletion factor and CO2 mass flow rate, which is a key parameter in HRR calculations, showed strong linearity at 6 % for the methane burner fire. The contribution of HRR by CO was less than 7% compared with the of HRR by CO2 in the CDG calculation method. The linearity of the OC and CDG methods with respect to HRR of the referenced methane burner in a quasi-steady state was less than 1%; this indicates that the CDG method can be utilized as a complementary method in heat release rate measurement.

The Characteristic of Extinguishment of Engine Nacelle Fire Using a Bluff Body (둔각 물체를 이용한 엔진 나셀 화재 소화 특성)

  • Lee, Jung-Ran;Lee, Eui-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.20-25
    • /
    • 2012
  • The purpose of the study is to assess the extinguishing concentration of inert gases in engine nacelle fire. The experiment was performed with a two dimensional rectangular bluff body stabilized flames, where the fuel was ejected to counter flow and co-flow against an oxidizer stream. Two inert gases, $CO_2$ and $N_2$, were used for extinguishing agent in the oxidizer and methane was used for fuel. The main experimental parameters were the direction of injecting fuel, the kinds of agent and the velocity ratio between air and fuel streams, which controlled the mixing characteristic near bluff body and the strength of recirculation zone in the downstream. The result shows the flame structure and the mode were strongly dependent with fuel/air ratio and the fuel jet direction. For both flow configurations, the extinguishing concentration of $CO_2$ was smaller than the $N_2$ because of the large heat capacity of $CO_2$. However, the concentration of inert gasesat blowout was much smaller than those in the cup burner and coflow jet diffusion flames, which implies that the extinction mechanism of bluff body stabilized flames was mainly due to the aerodynamic aspect. Compared to co-flow fuel injection, the extinguishing concentration of inert gases under counter flow configuration was lower. The effect of direction might result from the mixing characteristic and strength of recirculation zonearound a bluff body. More details should be investigated for the characteristic of recirculation zone in the wake of bluff body using the LES(Large Eddy Simulation).

The Study of Effects of Variable Parameters on Flame Structure and NOx Emission in Methane/Air Laminar Partially Premixed Flames (메탄/공기 층류 부분 예혼합화염에서 예혼합 정도에 따른 화염구조와 질소산화물의 배출에 미치는 영향에 관한 연구)

  • Oh, Jeong-Seog;Jeong, Yong-Ki;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.362-367
    • /
    • 2003
  • It is shown that the effect of variable parameters on flame structures and NOx emissions in the laminar partially premixed methane-air flames with a co-axial Bunsen burner. Objectives of this paper is to understand the effects of flow variables on NOx emissions and the flame structure with OH chemiluminescence, including reconstructed image by abel inversion processing at each conditions. A fuel flowrate of 200 [cc/min] was fixed and the amount of air was varied from 400 to 1200 [cc/min]. The experimental variables were equivalence ratio(${\Phi}$ fuel split percentage(${\sigma}$ and inner tube recess(x/D). Flow conditions were ranged from $1.36{\sim}4.76$(equivalence ratio), $50{\sim}100$(fuel split percentage) and $0{\sim}20$(inner tube recess). NOx analyzer and ICCD camera with a OH filter were used as a main experimental apparatus. In addition, Abel inversion, which is a kind of tomography and valuable to estimate a two-dimensional structure of co-axial flames from cubical information, was employed for combustion diagnostics. Results from this study indicate that the main effects depend on equivalence ratio and next sigma, x/D for NOx production and OH formation. Throughout Abel inversion, we could affirm the maximum position and the tendency of OH radical intensity by variants at five axial heights above the burner exit.

  • PDF

Influence of Fuel concentration gradient on the Extinction Behavior in Buoyancy minimized Counterflow Diffusion Flame (부력을 최소화한 대향류 확산화염 소화거동에서 연료농도구배의 영향)

  • Park, Jin Wook;Park, Jeong;Yun, Jin-Han;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.379-381
    • /
    • 2014
  • Influence of fuel concentration gradient was investigated near flame extinction limit in buoyancy-suppressed non-premixed counterflow flame with triple co-flow burner. The use of He curtain flow produced a microgravity level of $10^{-2}-10^{-3}g$ in He-diluted non-premixed counter triple co-flow flame experiments. Flame stability map was presented based on flame extinction and oscillation near extinction limit. The stability map via critical diluent mole fraction with global strain rate was represented by varying outer and inner He-diluted mole fractions. The flame extinction modes could be classified into five: an extinction through the shrinkage of the outmost edge flame forward the flame center with and without self-excitation, respectively ((I) and (II)), an extinction via the rapid expansion of a flame hole while the outmost edge flame is stationary (III), both the outermost and the center edge flames oscillate, and then a donut shaped flame is formed or the flame is entirely extinguished (IV), a shrinkage of the outermost edge flame without self-excitation followed by shrinking or sustain the inner flame (V).

  • PDF

Heat Transfer and Pressure Drop of Cross-flow Heat Exchanger on Modules Variation (직교류 열교환기의 모듈수에 따른 열전달 및 압력강하 특성)

  • Kim, Jong-Min;Kim, Jinsu;Yu, Byeonghun;Kum, Sungmin;Lee, Chang-Eon;Lee, Seungro
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.120-127
    • /
    • 2013
  • This study investigated the characteristics of heat transfer and pressure drop for cross-flow heat exchanger of premixed combustion system. The premixed burner was in front of a heat exchanger, and the number of heat exchanger modules was changed to investigate the characteristics of NOx and CO emissions with various equivalence ratios. In addition, the effectiveness, entropy generation and pressure drop were calculated by various number of heat exchanger modules and the performance of heat exchanger was analyzed by the exergy loss.

The Effects of Advanced Reburning with SNCR on NOx and CO Reduction (무촉매 환원법이 적용된 응용 재연소 방법에 의한 NOx와 CO의 저감 효과)

  • Lee Chang-Yeop;Kim Dong-Min;Baek Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.788-795
    • /
    • 2006
  • From the view of the environmental protection against the use of fossil fuels, the great of efforts have been exerted to find an effective method which is not only pollutant reduction but also high thermal efficiency. Reburning is a useful technology in reducing nitric oxide through injection of a secondary hydrocarbon fuel. In this paper, an experimental study has been conducted to evaluate the hybrid effects of reburning and selective non-catalytic reaction (SNCR) on $NO_x/CO$ reduction from oxygen-enriched LPG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LPG gas as main fuel and also as reburn fuel. The paper reported data on flue gas emissions, temperature distribution in furnace and various heat fluxes at the wall for a wide range of experimental conditions. Overall temperature in the furnace, heat fluxes to the wall and $NO_x$ generation were observed to increase by oxygen-enriched combustion, but due to its hybrid effects of reburning and SNCR, $NOx/CO$ concentration in the downstream has considerably decreased.