• 제목/요약/키워드: Co-extrusion

검색결과 137건 처리시간 0.03초

Effects of extrusion of rice bran on performance and phosphorous bioavailability in broiler chickens

  • Zare-Sheibani, Ali Akbar;Arab, Masoud;Zamiri, Mohammad Javad;Rezvani, Mohammad Reza;Dadpasand, Mohammad;Ahmadi, Farhad
    • Journal of Animal Science and Technology
    • /
    • 제57권7호
    • /
    • pp.26.1-26.5
    • /
    • 2015
  • Background: Rice bran is a by-product of the rice-milling process, which remains largely underutilized; however, efficient processing treatments may improve its feeding value for chickens. This is of great economic and environmental importance, as this can lower the production costs, and offer an opportunity for valorization of a low-quality agricultural by-product, to a high-value feed source. Methods: This experiment was conducted to study the effect of extruded rice bran on performance and phosphorous (P) bioavailability in broiler chickens. In a completely randomized design, 200 seven-day-old broilers (Cobb 500) were allotted to five treatments with five replicates per treatment and 8 chicks per replicate, and fed with their respective diet during the starter (8 to 21 days) and grower (22 to 42 days) periods. Diets were a basal corn-soybean based diet (T1), or diets containing 20 % rice bran (T2), 30 % rice bran (T3), 20 % extruded rice bran (T4), or 30 % extruded rice bran (T5). Results: Birds feeding on T4 and T5 diets had a higher body weight gain and lower feed-to-gain ratio compared to those feeding on T2 and T3 diets (p < 0.05). Birds receiving diets containing extruded rice bran had higher total P availability and tibia ash content, as compared with those receiving diets containing un-extruded rice bran (p < 0.05). Relative weight of the pancreas was higher in birds receiving T2 and T3 diets. Conclusions: The results confirmed the beneficial effect of extrusion treatment of rice bran on performance and P availability in broilers. Up to 30 % extruded rice bran may be included in the broiler diet without apparent adverse effects on the performance.

Physical Properties of Graphite Nanofiber Filled Nylon6 Composites

  • Park, Eun-Ha;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • 제7권2호
    • /
    • pp.87-96
    • /
    • 2006
  • This paper describes the physical properties of filled Nylon6 composites resin with nano-sized carbon black particle and graphite nanofibers prepared by melt extrusion method. In improving adhesions between resin and fillers, the surface of the carbon filler materials were chemically modified by thermo-oxidative treatments and followed by treatments of silane coupling agent. Crystallization temperature and rate of crystallization increased with increases in filler concentration which would act as nuclei for crystallization. The silane treatments on the filler materials showed effect of reduction in crystallization temperature, possibly from enhancement in wetting property of the surface of the filler materials. Percolation transition phenomenon at which the volume resistivity was sharply decreased was observed above 9 wt% of carbon black and above 6 wt% of graphite nanofiber. The graphite nanofibers contributed to more effectively in an increase in electrical conductivity than carbon black did, on the other hand, the silane coupling agent negatively affected to the electrical conductivity due to the insulating property of the silane. Positive temperature coefficient (PTC) phenomenon, was observed as usual in other composites, that is, temperature increase results conductivity increase. The dispersity of the fillers were excellently approached by melt extrusion of co-rotational twin screw type and it could be illustrated by X-ray diffraction and SEM.

  • PDF

PC 및 PMMA 수지를 이용한 LED 백라이트용 확산판의 제조 및 특성 연구 (Preparation and Characteristics of PC and PMMA-Based Diffusers for LED Backlight Unit)

  • 김남이;김효진;김동원;조재현;김성우
    • 반도체디스플레이기술학회지
    • /
    • 제11권1호
    • /
    • pp.21-27
    • /
    • 2012
  • The optical diffuser for direct-lit LED backlight unit was prepared by using extrusion compounding followed by thermoforming process. Poly(methyl methacrylate) (PMMA) with superior optical characteristics and polycarbonate (PC) with good thermal property were used as base resins, and crosslinked polystyrene (PS) and PMMA beads as diffusing agents were incorporated into resin matrix to derive light scattering and diffusing action. In the compounded plate, the diffusing beads were observed to be dispersed uniformly and distinctly in the continuous phase. The inclusion of polymeric beads up to 3 wt% substantially enhanced the optical characteristics such as luminance, luminance uniformity, haze for the diffuser. Two different diffusers of PC and PMMA-based compound with various compositions were compared in terms of measured optical, thermal, and mechanical properties, which would be expected to be utilized for the industrial application of LED backlight unit.

타이타늄 중공마더빌렛 주조재의 열처리공정 최적화 연구 (Study for Heat Treatment Optimization of Titanium Hollow Casted Billet)

  • 윤창석;박양균;이형욱;이동근
    • 열처리공학회지
    • /
    • 제32권2호
    • /
    • pp.68-73
    • /
    • 2019
  • ${\alpha}$-titanium alloy has a relatively low heat treatment characteristic and it is mainly subjected to heat treatment for residual stress, recovery or dynamic recrystallization. In this study, commercially pure titanium hollow castings was fabricated by gravity casting. Heat treatments were carried out at $750^{\circ}C$, $850^{\circ}C$ and $950^{\circ}C$ to investigate the effect of post-heat treatment on microstructure and mechanical properties. Beta-transus temperature ($T_{\beta}$) was about $913^{\circ}C$, and equiaxed microstructure was shown at temperature below $T_{\beta}$ and lath-type microstructure at temperature above $T_{\beta}$. Microstructure and mechanical properties did not show any significant difference in the direction of solidification for titanium hollow billet, so it can be seen that it was a well-made material for extrusion process. The optimum heat treatment condition of hollow billet castings for the seamless tube production was $850^{\circ}C$, 4 hr, FC, indicating a combination of equiaxed microstructure and appropriate mechanical properties.

Single-screw Food Extruder의 제작과 Corn Grits 팽화시의 기계적 성질과 제품 특성 (Construction of Single-screw Food Extruder and its Mechanical Properties and Product Characteristics for Corn Grits Extrusion-cooking)

  • 이철호;임재각;김재득;이문희
    • 한국식품과학회지
    • /
    • 제15권4호
    • /
    • pp.392-398
    • /
    • 1983
  • 식품 압출성형기 (Food Extruder)의 기계적 성질과 제품 특성을 이해하기 위하여 다목적 Pilot plant 용 Single-Screw Extruder를 제작하고 corn grits를 사용한 Extrusion-cooking process의 기계적 성질과 제품 특성을 조사 하였다. Start-up 기간에서 스크류우 회전속도에 따른 열 발생속도를 측정하여 다음과 같은 결론을 얻었다. Start-up 기간에서의 열 발생속도는 스크류우 회전속도 및 원료사입속도에 직접적인 영향을 받았다. 추정된 바렐내부에서의 반죽의 점도는 스크류우 회전속도에 크게 영향을 받았으며 이 점도의 변화로 바렐내부에서의 가열 용융반응이 진행되는 정도를 예측할 수 있었다. Start-up 기간에서의 팽화율은 주로 바렐내부의 온도와 열용융 반응이 일어난 정도에 의존하였다. Corn Grits가 호화되는 바렐온도와 탄화가 일어나는 온도는 회전속도에 따른 체재시간에 크게 영향을 받았다.

  • PDF

간략화된 점탄성 모델을 적용한 고무 컴파운드의 압출 해석 (Computer Simulation of Die Extrusion for Rubber Compound Using Simplified Viscoelastic Model)

  • 김지현;홍진수;최성현;김학주;류민영
    • Elastomers and Composites
    • /
    • 제46권1호
    • /
    • pp.54-59
    • /
    • 2011
  • 점탄성 흐름의 특성은 압출시 다이 스웰 현상에서 확인 할 수 있다. 본 연구는 이러한 점탄성 특성을 갖는 고무 컴파운드를 모세관 다이에서 비선형 점탄성 모델인 PTT 모델과 간략화된 점탄성 모델을 이용하여 압출현상을 모사하고 다이 스웰을 실험과 비교 하였다. 실험은 Fluidity Tester를 이용하였고 해석은 상용화된 CFD Code인 Polyflow를 이용하였다. 두 모델에 의해 예측된 다이 스웰은 실험과 유사한 결과를 보였다. 그러나 PTT 모델에서는 압력과 속도분포, 레저버의 모서리에서의 와류현상을 예측할 수 있었지만 간략화된 점탄성 모델에서는 예측할 수 없었다. 간략화된 점탄성 모델은 다이 내부의 세밀한 흐름현상을 예측하지는 못하지만 다이 스웰은 잘 예측할 수 있으며 PTT모델보다 해석시간이 매우 짧아서 이의 응용에 큰 장점을 갖고 있다고 판단된다.

초미세 발포 연속공정을 위한 $CO_2$ 사용이 재료의 점도변화에 미치는 영향 (Effect of the $CO_2$ on Viscosity Change in Continuous Microcellular Foaming Processing)

  • 문용락;차성운
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1394-1397
    • /
    • 2003
  • The first thing in developing injection molding and extrusion with microcellular foaming process is to get a grip on one phase state's rheology of gas and polymer solution. Understanding rheology is essential to design mold or die. and it is so important to control the condition of process. Also, this data is got the utmost out of simulation carrying out. In this paper, we will see the measurement of rheology in one phase that mixed polypropylene which contains talc with carbon dioxide of super critical fluid state, and will compare its result with the simulation result.

  • PDF

압출용 2축 스크류의 형상설계 및 비토크 특성 (Shape Design and Specific Torque Characteristics of the Extrusion Twin Screw)

  • 최부희;최상훈
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.185-193
    • /
    • 2003
  • The modular self-wiping co-rotating twin screw extruder (SWCOR) has become the most important of twin screw machines. Screw design is one of the most important factors in determining performance of screw extruder. The screw flight and screw channel geometry of SWCOR is determined by the screw diameter, centerline distance, helix angle, and flights number. The maximum allowable throughput rate on a twin screw extruder is determined by a combination of free volume and available specific torque. In this paper we designed geometrical parameters of extruder screw and presented optimal specific torque value in K=1.55, and then developed screw design program for the screw cutting by the use of JAVA API in the twin screw extruder.

Numerical analysis of internal flow and mixing performance in polymer extruder II: twin screw element

  • Kim, Nak-Soo;Kim, Hong-Bum;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제18권3호
    • /
    • pp.153-160
    • /
    • 2006
  • We analyzed the non-Newtonian and non-isothermal flow with Carreau-Yasuda viscosity model in co-rotating and counter-rotating twin screw extruder systems. The mixing performances with respect to the screw speed, the screw pitch, and the rotating direction have been investigated. The dynamics of mixing was studied numerically by tracking the motions of particles. The extent of mixing was characterized in terms of the deformation rate, the residence time distribution, and the average strain. The results showed that the high screw speed decreases the residence time but increases the deformation rate. Small screw pitch increases the residence time. It is concluded that the high screw speed increases the dispersive mixing performance, while the small screw pitch increases the distributive mixing performance. Co-rotating screw extruder has the better conveying performance and the distributive mixing performance than counter-rotating screw extruder with the same screw speed and pitch. Co-rotating screw extruder developed faster transport velocity and it is advantageous the flow characteristics to the mixing that transfers polymer melt from one barrel to the other barrel.

반응 압출을 통한 PP-g-MA 제조 및 특성평가 (Preparation and Characterization of Grafted Maleic Anhydride onto Polypropylene by Reactive Extrusion)

  • 강동진;이성효;;박찬영;장진수;방대석;김진국
    • 폴리머
    • /
    • 제33권4호
    • /
    • pp.358-363
    • /
    • 2009
  • 반응성기를 가지는 산무수물(maleic anhydride, MAH)을 폴리프로필렌(PP)에 도입함으로써 PP/극성 고분자의 블렌드 및 PP/filler의 복합소재 제조에서 계면과 계면 사이에 물리적 결합 이외의 화학적 결합을 향상시키고 기계적 특성 및 열적 특성을 극대화할 수 있다. 본 실험에서는 개시제(di-cumyl periofide, DCP)와 MAH 함량에 따른 그래프트율을 FT-IR과 화학적 적정법(chemical titration)을 이용하여 측정하였다. 그 결과 MAH의 함량이 증가할수록 그래프트율이 증가하였고 DCP의 함량이 0.06 wt% 일때에 가장 높은 그래프트율을 나타내었다. 또한, MAH의 함량에 따라 용융 흐름지수(melt index)가 증가하는 것을 볼 수 있었으며, 용융온도 및 열 분해 등의 열적 거동은 시차주사열량계(DSC) 및 열중량 분석기(TGA)를 이용하여 MAH 그래프트율에 따른 변화를 분석하였다.