• Title/Summary/Keyword: Co-energy

Search Result 8,008, Processing Time 0.034 seconds

Crosslinking of Electrospun Poly (VDF-co-HFP) Nanofibrous Membranes by Gamma-ray Irradiation

  • Kim, Yun-Hye;Lim, Youn-Mook;Choi, Jae-Hak;An, Sung-Jun;Park, Jong-Seok;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.2 no.3
    • /
    • pp.105-110
    • /
    • 2008
  • Poly (VDF-co-HFP)/PEGDMA nanofibrous membranes (NFMs) have been prepared by an electrospinning process. Since electrospun NFMs have a nanoporous structure, they have a potential application for a polymer electrolyte or a separator. Poly (VDF-co-HFP) is a polymer electrolyte binder. In order to improve their mechanical properties, poly (VDF-co-HFP)/PEGDMA NFMs were crosslinked by a gamma-ray irradiation. Then the crosslinked NFMs were characterized through an electrolyte uptake, IR structural analysis, and SEM morphological investigation.

KEPCO-China Huaneng Post-combustion CO2 Capture Pilot Test and Cost Evaluation

  • Lee, Ji Hyun;Kwak, NoSang;Niu, Hongwei;Wang, Jinyi;Wang, Shiqing;Shang, Hang;Gao, Shiwang
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.150-162
    • /
    • 2020
  • The proprietary post-combustion CO2 solvent (KoSol) developed by the Korea Electric Power Research Institute (KEPRI) was applied at the Shanghai Shidongkou CO2 Capture Pilot Plant (China Huaneng CERI, capacity: 120,000 ton CO2/yr) of the China Huaneng Group (CHNG) for performance evaluation. The key results of the pilot test and data on the South Korean/Chinese electric power market were used to calculate the predicted cost of CO2 avoided upon deployment of CO2 capture technology in commercial-scale coal-fired power plants. Sensitivity analysis was performed for the key factors. It is estimated that, in the case of South Korea, the calculated cost of CO2 avoided for an 960 MW ultra-supercritical (USC) coal-fired power plant is approximately 35~44 USD/tCO2 (excluding CO2 transportation and storage costs). Conversely, applying the same technology to a 1,000 MW USC coal-fired power plant in Shanghai, China, results in a slightly lower cost (32~42 USD/tCO2). This study confirms the importance of international cooperation that takes into consideration the geographical locations and the performance of CO2 capture technology for the involved countries in the process of advancing the economic efficiency of large-scale CCS technology aimed to reduce greenhouse gases

Synthesis of CoSe2/RGO Composites and Its Application as a Counter Electrode for Dye-Sensitized Solar Cells

  • Ko, Yohan;Choi, Wooyeol;Kim, Youbin;Lee, Chanyong;Jun, Yongseok;Kim, Junhee
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.313-320
    • /
    • 2019
  • In this study, cobalt diselenide ($CoSe_2$) and the composites ($CoSe_2@RGO$) of $CoSe_2$ and reduced graphene oxide (RGO) were synthesized by a facile hydrothermal reaction using cobalt ions and selenide source with or without graphene oxide (GO). The formation of $CoSe_2@RGO$ composites was identified by analysis with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and scanning electron microscopy (SEM). Electrochemical analyses demonstrated that the $CoSe_2@RGO$ composites have excellent catalytic activity for the reduction of $I_3{^-}$, possibly indicating a synergetic effect of $CoSe_2$ and RGO. As a consequence, the $CoSe_2@RGO$ composites were applied as a counter electrode in DSSC for the reduction of redox couple electrolyte, and exhibiting the comparable power conversion efficiency (7.01%) to the rare metal platinum (Pt) based photovoltaic device (6.77%).

Energy Efficiency and CO2 Emissions of the Transportation System of Kazakhstan: A Case of Almaty

  • Yessekina, Aiman;Urpekova, Amina
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.2 no.3
    • /
    • pp.41-46
    • /
    • 2015
  • Energy saving in the transport sector in the framework of the annual growth of energy consumption, the degree of negative impact on the environment and the amount of harmful emissions are becoming increasingly important. The article considers the world tendencies of energy consumption in transportation sector and emphasizes its dependency from oil. Also article describes the dynamics of energy use and CO2 emissions from transport of city Almaty. In conclusion authors identify a number of problems in the transport sector, which hinder the implementation of energy efficiency measures and measures to reduce CO2 emissions.

공동주책의 에너지소비와 이산화탄소 배출특성

  • 이윤규;이강희
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.868-877
    • /
    • 2001
  • This study is to present the typical energy consumption criteria and $CO_2$ exhaust rate in multi-family housing complex by analyzing the energy consumption characteristics. The contents and methodology of this study are as follows; -Examining the documents of maintenance accounts, investigate the cost and its items expended by the annual maintenance in multi-family housing complex. -Survey each consumption of energy sources, maintenance area, location of multi-family housing complex, heating type, and so forth. -After classifying with heating type of multi-family housing complex investigated, Scrutinize the energy consumption by each source. -Analyze the characteristics of energy consumption and $CO_2$ exhaust through multiple regression analyses of maintenance property. -Suggest the typical energy consumption criteria (Mcal/$m^2$.year, Mcal/house.year) and $CO_2$ exhaust rate (kg-c/$m^2$.year, Kg-c/house.year) in multi-family housing complex. the results will come into basic data for estimating energy consumption in multi-family housing complex according to maintenance characteristics.

  • PDF

An Energy Recovery Circuit for AC Plasma Display Panel with Serially Coupled Load Capacitance-SER1

  • Yang, Jin-Ho;Whang, Ki-Woong;Kang, Kyoung-Ho;Kim, Young-Sang;Kim, Hee-Hwan;Park, Chang-Bae
    • Journal of Information Display
    • /
    • v.2 no.4
    • /
    • pp.63-67
    • /
    • 2001
  • The switching power loss due to the panel capacitance during sustain period in AC PDP driving system can be minimized by using the energy recovery circuits. We proposed a new energy recovery circuit, SER1 (Seoul national univ. Energy Recovery circuit 1st). The experimental results of its application to a 42-inch surface discharge type AC PDP showed superior performance of SER1 in energy recovery efficiency and low distortion voltage waveform. Energy recovery efficiency of SER1 was measured up to 92.3 %, and the power dissipation during the sustain period was reduced by 15.2 W in 2000 pulse/frame compared with serial LC resonance energy recovery circuit.

  • PDF

Comparison of Cost-Efficiency of Nuclear Power and Renewable Energy Generation in Reducing CO2 Emissions in Korea (원자력 및 신재생에너지 발전의 CO2 감축 비용 효율성 비교)

  • Lee, Yongsung;Kim, Hyun Seok
    • Environmental and Resource Economics Review
    • /
    • v.30 no.4
    • /
    • pp.607-625
    • /
    • 2021
  • The objective of this study is to estimate the relationship between CO2 emissions and both nuclear power and renewable energy generation, and compare the cost efficiencies of nuclear power and renewable energy generation in reducing CO2 emissions in Korea. The results show that nuclear power and renewable energy generation should be increased by 1.344% and 7.874% to reduce CO2 emissions by 1%, respectively. Using the estimated coefficients and the levelized costs of electricity by source including the external costs, if the current amount of electricity generation is one megawatt-hour, the range of generation cost of nuclear power generation to reduce 1% CO2 emissions is $0.72~$1.49 depending on the level of external costs. In the case of renewable energy generation, the generation cost to reduce 1% CO2 emissions is $6.49. That is, to mitigate 1% of CO2 emissions at the total electricity generation of 353 million MWh in 2020 in Korea, the total generation costs range for nuclear power is $254 million~$526 million for the nuclear power, and the cost for renewable energy is $2.289 billion for renewable energy. Hence, we can conclude that, in Korea, nuclear power generation is more cost-efficient than renewable energy generation in mitigating CO2 emissions, even with the external costs of nuclear power generation.

Non-energy Use and $CO_2$ Emissions: NEAT Results for Korea

  • Park, Hi-chun
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.34-46
    • /
    • 2002
  • Carbon accounting is a key issue in the discussions on global warming/CO$_2$mitigation. This paper applies both the IPCC Approach and the NEAT (Non-Energy use Emission Accounting Tables) model, a bottom-up approach, to estimate the potential CO$_2$ emissions (carbon storage) originating from the non-energy use as to assess the actual CO$_2$ emissions (carbon release) from the use of fossil fuels in Korea. The current Korean carbon accounting seems to overestimate the potential CO$_2$ emissions and with it to underestimate the actual CO$_2$ emissions. The estimation shows that the potential CO$_2$ emissions calculated according to the IPCC Approach are lower than those calculated using the NEAT model. This is because the IPCC default storage fraction for naphtha seems to be low for the Korean petrochemical production structure, on the one hand and because the IPCC Approach does not consider the trade with short life petrochemical products, on the other hand. This paper shows that a bottom-up approach like the NEAT model can contribute to overcome some of limitations of the IPCC guidelines, especially by considering the international trade with short life petrochemical products and by estimating the storage fractions of fossil fuels used as feedstocks for the country in consideration. This paper emphasizes the importance of accurate energy statistics for carbon accounting.

Thermal Degradation of Aqueous MEA Solution for CO2 Absorption by Nuclear Magnetics Resonance (핵자기공명분석법을 이용한 수용성 아민 CO2 흡수제인 MEA의 열적변성 분석)

  • CHOI, JEONGHO;YOON, YEOIL;PARK, SUNGYOUL;BAEK, ILHYUN;KIM, YOUNGEUN;NAM, SUNGCHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.5
    • /
    • pp.562-570
    • /
    • 2016
  • At the carbon dioxide capture process using the aqueous amine solution, degradation of absorbents is main factor to reducing the process performance. Also, degradation mechanism of absorbent is important for understanding the environmental risk, route of degradation products, health risk etc. In this study, the degradation products of MEA were studied to clarify mechanism in thermal degradation process. The degradation products were analyzed using a $^1H$ NMR (nuclear magnetic resonance) and $^{13}C$ NMR. The analysis methods used in this study provide guidelines that could be used to develop a degradation inhibitor of absorbent and a corrosion inhibitor.

Policy implication of nuclear energy's potential for energy optimization and CO2 mitigation: A case study of Fujian, China

  • Peng, Lihong;Zhang, Yi;Li, Feng;Wang, Qian;Chen, Xiaochou;Yu, Ang
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1154-1162
    • /
    • 2019
  • China is undertaking an energy reform from fossil fuels to clean energy to accomplish $CO_2$ intensity (CI) reduction commitments. After hydropower, nuclear energy is potential based on breadthwise comparison with the world and analysis of government energy consumption (EC) plan. This paper establishes a CI energy policy response forecasting model based on national and provincial EC plans. This model is then applied in Fujian Province to predict its CI from 2016 to 2020. The result shows that CI declines at a range of 43%-53% compared to that in 2005 considering five conditions of economic growth in 2020. Furthermore, Fujian will achieve the national goals in advance because EC is controlled and nuclear energy ratio increased to 16.4% (the proportion of non-fossil in primary energy is 26.7%). Finally, the development of nuclear energy in China and the world are analyzed, and several policies for energy optimization and CI reduction are proposed.