• 제목/요약/키워드: Co-curing

검색결과 447건 처리시간 0.034초

초임계 CO2를 활용한 콘크리트의 최적 탄산화양생기법 개발에 관한 기초적 연구 (A Basic Study on the Development of Optimum Carbonation Curing Techniques for Concrete Using Supercritical CO2)

  • 홍성준;류동우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.91-92
    • /
    • 2022
  • This study is a basic study on carbonation curing technology of concrete using supercritical CO2, and carbonation curing was carried out by exposing concrete to supercritical CO2 for a certain period of time. In the case of conventional carbonation curing, long-term curing was performed for several weeks by controlling the concentration of CO2, but by using supercritical CO2, more rapid carbonation curing was carried out using constant temperature and pressure conditions to improve durability through surface modification of concrete. This experiment was conducted with the goal of deriving the optimal carbonation curing conditions by measuring the carbonation depth by exposing concrete for a certain period of time to conditions above the supercritical level. As a result, it was confirmed that the carbonation depth increased as the curing time increased, and the curing time could be shortened compared to the carbonation curing according to the existing CO2 concentration.

  • PDF

알루미늄/CFRP 복합재의 접착강도 향상을 위한 경화방법에 관한 연구 (A Study on the Curing Method to Improve Bonding Strength of Aluminum/CFRP Composites)

  • 이경엽;양준호;최낙삼
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.130-135
    • /
    • 2002
  • This study investigates the effect of curing method on the bonding strength of aluminum/CFRP composites. The surface of aluminum panel was treated by DC plasma. Lap shear tests and T-peel tests were performed based on the procedure of ASTM 906-94a and ASTMD1876-95, respectively. Test samples were fabricated by using the co-curing method and the secondary curing method. The results showed that the shear strength of test samples made by the co-curing method was 2.5 times greater than that of test samples made by the secondary curing method. The T-peel strength of the co-curing method case was almost 2 times greater than that of the secondary curing method case.

CO2 양생에 의한 MgO 혼입 모르타르의 압축강도 발현에 관한 연구 (A study on the compressive strength development of mortar containing MgO by CO2 curing)

  • 성명진;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.23-24
    • /
    • 2014
  • Currently, cement and concrete industries have been contributing to the CO2 emission worldwide. Because of that, the efforts to minimize CO2 have been the subject of many researches. This study focus on the use of GGBFS and fly ash in mortar specimens as a patial replacement of cement. Because of the limitation of the initial compressive strength, the newly efforts to enhance the strength through CO2 Curing was adapted. To accelerate the reaction with CO2, MgO was replaced by percentage from 0 to 100%. Results showed that compressive strength values at 7 days with CO2 curing done on specimens was higher than that with no CO2 curing. Similar trend was observed at 14 days too. It is therefore appeared that CO2 curing has an obvious effect on compressive strength development of mortar specimens.

  • PDF

γ-C2S 및 MgO를 다량 혼입한 시멘트 페이스트의 CO2 양생유무에 따른 특성변화 (Properties of Cement Paste Containing High Volume γ-C2S and MgO Subjected to CO2 Curing)

  • 성명진;조형규;이한승
    • 한국건축시공학회지
    • /
    • 제15권3호
    • /
    • pp.281-289
    • /
    • 2015
  • 본 연구에서는 $CO_2$ 양생 효과를 극대화 할 수 있는 ${\gamma}-C_2S$와 MgO와 같은 $CO_2$ 흡수 물질을 혼입한 시멘트 페이스트의 $CO_2$ 양생 효과에 관한 연구를 위하여 W/B를 40%로 설정하고 혼화재료 ${\gamma}-C_2S$와 MgO를 90% 다량 치환하여 혼화재료, $CO_2$ 양생 유무에 따른 압축강도 측정, 미세 화학분석을 실시하였다. 그 결과 $CO_2$ 양생으로 인해 Plain의 경우 약 1.08배~1.26배의 압축강도 증가 효과가 나타났으며 ${\gamma}-C_2S$와 MgO를 90% 치환한 ${\gamma}-C_2S$, MgO 실험체의 경우, 각각 14.56배~45.7배, 6.5배~10.37배 향상 효과가 나타났다. 이에 따라 미세 화학분석을 실시하여 다량의 $CaCO_3$, $MgCO_3$가 생성된 것을 확인하고 공극 감소의 효과를 확인하였다. 따라서 $CO_2$ 흡수물질 ${\gamma}-C_2S$, MgO를 다량 혼입한 시멘트 페이스트의 $CO_2$ 양생에 의한 압축강도 발현효과가 검증됨을 확인할 수 있었다.

The effect of combined carbonation and steam curing on the microstructural evolution and mechanical properties of Portland cement concrete

  • Kim, Seonhyeok;Amr, Issam T.;Fadhel, Bandar A.;Bamagain, Rami A.;Hunaidy, Ali S.;Park, Solmoi;Seo, Joonho;Lee, H.K.
    • Advances in concrete construction
    • /
    • 제11권5호
    • /
    • pp.367-374
    • /
    • 2021
  • The present study investigated the effect of the combined carbonation and steam curing on the physicochemical properties and CO2 uptake of the Portland cement concrete. Four different curing regimes were adopted during the initial 10 h of curing to evaluate the potential of carbonation curing as an alternative to conventional steam curing in the precast concrete industry from environmental and practical viewpoints. Four combinations of carbonation and steam curing conditions were applied as curing regimes to the samples at an early age. The test results indicated that the samples treated with the combined carbonation and steam curing exhibited higher early strength development compared to the other samples, signifying that carbonation curing can reduce the production time of precast concrete. Furthermore, the CO2 uptake capacity of the samples was calculated and found to be as high as 18% with respect to the mass of the paste samples. Hence, the simultaneous utilization of steam and CO2 for the fabrication of precast concrete members has the potential to make precast concrete greener and more cost-effective.

레미콘 슬러지 고형분을 주재료로 한 자원순환형 콘크리트의 초임계 CO2 양생에 관한 기초적 연구 (A Fundamental Study on Supercritical CO2 Curing of Resource-Recycling Concrete Containing Concrete Sludge Waste as Main Materials)

  • 심상락;이영도;류동우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.27-28
    • /
    • 2022
  • In this study, the mechanical properties of resource-recycling concrete containing concrete sludge waste as main materials was compared depending on whether supercritical CO2 curing was applied for the realization of CCU technology. After supercritical CO2 curing, the compressive strength of the steam-cured specimen was lowered, but it was confirmed that the compressive strength of the underwater-cured specimen was improved.

  • PDF

CO2 반응경화 시멘트 활용 모르타르의 양생조건에 따른 역학적 특성 (Mechanical Properties According to Curing Conditions of Mortar Using CO2 Hardening Cement)

  • 서지석;태선규;이준;이봉춘
    • 한국건설순환자원학회논문집
    • /
    • 제11권4호
    • /
    • pp.307-315
    • /
    • 2023
  • 이 연구에서는 CO2 반응경화 시멘트인 CSC와 일반 시멘트인 OPC의 혼합비율에 따라 모르타르 시험체를 제작하고 1차 양생온도 및 2차양생 CO2 압력을 제어하여 역학적 특성과 탄산화 특성에 대해 평가하였다. 모든 양생조건에서 CSC 비율이 높을수록 역학적 특성이 감소하는 것으로 나타났다. 1차 양생온도가 60 ℃인 경우가 20 ℃인 경우보다 더 높은 역학적 특성을 나타냈으며 탄산화 침투 깊이 또한 더 큰 것으로 나타났다. 2차 CO2 양생의 양생압력과 휨 강도는 반비례하였으나 압축강도는 비례하는 관계로 나타났다. 이는 과도한 탄산화가 오히려 역학적 특성을 감소하는 것에 기인한 것과 휨 강도가 압축강도에 비해 이러한 특성에 더 민감하기 때문인 것으로 판단된다. 다만, 제한 양생조건에 대한 평가결과로 향후 시험조건을 확장하여 면밀한 검토가 필요하다.

모자(Hat)형 보강재를 가진 복합재 패널의 제작과 평가 (Fabrication and Evaluation of Composite Panel with Hat-shaped Stiffeners)

  • 김건희;임도완;최진호;권진회;이태주;송민환;신상준
    • Composites Research
    • /
    • 제23권2호
    • /
    • pp.31-39
    • /
    • 2010
  • 본 논문에서는 모자(Hat)형 보강구조를 가진 복합재 패널을 일체성형(Co-curing), 동시접착(Co-bonding), 이차접착(Secondary bonding)의 세 가지 공법으로 제작하였다. 일체성형은 별도의 접착제 없이 프리프레그 상태의 외피와 보강재를 만들어 함께 성형하는 방법으로 다른 제작 공법에 비해 별도의 조립공정이 불필요한 경제적인 공법이다. 동시접착은 외피와 보강재 중 하나를 먼저 성형하고, 나머지는 프리프레그 상태로 먼저 성형된 구조물과 함께 성형하는 방법이며, 이차접착은 복합재 외피와 보강재를 각각 별도로 제작한 후 이를 접착제를 이용하여 별도로 접착하는 방법이다. 일체성형으로 보강 패널을 제작하는 공정에서는 경화 후 내부 금형의 제거를 용이하게 하기 위한 고무금형을 설계, 제작하였고, 경화 온도로 인해 고무금형에서 발생하는 팽창압력에 대한 유한요소해석을 수행하였다. 제작된 보강 패널은 3-D 측정 장비와 초음파 장비로 치수정밀도 및 내부 결함을 평가하였으며, 직접인장시험(Pull-off test)을 수행하여 기계적 특성을 평가하였다.

Manufacture of Cement-Bonded Particleboards from Korean Pine and Larch by Curing of Supercritical CO2 Fluid

  • Suh, Jin-Suk;Hermawan, Dede;Kawai, Shuichi
    • Journal of the Korean Wood Science and Technology
    • /
    • 제28권4호
    • /
    • pp.41-50
    • /
    • 2000
  • Cement-bonded particleboard is being used as outdoor siding material all over the world, because this composite particularly bears a light weight, high resistance against fire, decay, and crack by cyclic freezing and thawing, anti-shock property, and strength enhancement. Construction systems are currently changing into a frame-building style and wooden houses are being constructed with prefabrication type. Therefore, they require a more durability at outdoor-exposed sides. In this study, the cement hydration property for Korean pine particle, Japanese larch particle and face- and middle layer particles (designated as PB particle below) used in Korean particleboard-manufacturing company was investigated, and the rapid manufacturing characteristics of cement-bonded particleboard by supercritical $CO_2$ curing was evaluated. Korean pine flour showed a good hydration property, however, larch flour showed a bad one. PB particle had a better hydration property than larch flour. The addition of $Na_2SiO_3$ indicated a negative effect on hydration, however, $MgCl_2$ had a positive one. Curing by supercritical $CO_2$ fluid gave a conspicuous enhancement in the performances of cement-bonded particleboards compared to conventional curing. $MgCl_2$ 3%-added PB particle had the highest properties, and $MgCl_2$ 1%-added Korean pine particle had the second class with the conditions of cement/wood ratio of 2.7, a small fraction-screened particle and supercritical curing. On the contrary, the composition of non-hammermilled or large fraction-screened particle at cement/wood ratio of 2.2 was poorer. Also, the feasibility for actual use of 3%-added, small PB particle-screened fraction was greatest of all the conventional curing treatments. Relative superiority of supercritical curing vs. conventional curing at dimensional stability was not so apparent as in strength properties. Through the thermogravimetric analysis, it was ascertained that the peak of a component $CaCO_3$ was highest, and the two weak peaks of calcium silicate hydrate and ettringite and $Ca(OH)_2$ were present in supercritical treatment. Accordingly, it was inferred that the increased formation of carbonates in board contributes to strength enhancement.

  • PDF

고온 환경에 노출된 시멘트 페이스트의 DCG 양생을 통한 화학적 안정화 (Chemical Stability through CO2 Curing of Cement Paste Exposed to High Temperature)

  • 김민혁;조현서;이건철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.73-74
    • /
    • 2019
  • In order to examine the chemical stabilization through DCG curing of cement paste exposed to high temperature environment, we produced a sample of 40% W/C cement paste and heated it for 180 minutes under the heating temperature of $800^{\circ}C$. The DCG curing time was 6, Three time conditions were divided into 12 and 18 hours. As a result of XRD analysis, Calcite ($CaCO_3$) was found in Theta 29.4, 40, and 46.5o. As the curing time increased, the peak of Calcite also increased, which is due to the increased reaction time with DCG. Therefore, Calcite produced through DCG curing seems to have stabilized chemically by filling the pores generated by heating.

  • PDF