• 제목/요약/키워드: Co-cr alloy

검색결과 296건 처리시간 0.023초

의치상의 종류에 따른 상악 의치상의 유지력에 관한 임상적 연구 (A CLINICAL STUDY ON THE RETENTION OF MAXILLARY COMPLETE DENTURE WITH DIFFERENT DENTURE BASE MATERIALS)

  • 이종혁;임주환;조인호
    • 대한치과보철학회지
    • /
    • 제39권1호
    • /
    • pp.58-70
    • /
    • 2001
  • For the successful treatment of complete denture, obtaining a good retention is essential. There are lots of factors affecting denture retention. Denture material, one of those factors affecting denture retention, was the subject of this study, and internal surface treatment also considered for the method of enhancing denture retention. Two resin(Lucitone $199^{(R)}$(heat cured resin) Vertex $CP^{(R)}$(self cured resin)) and two metal($Biosil^{(R)}$(Co-Cr alloy), $Vitallium^{(R)}$(Co-Cr alloy)) denture base materials were used for making test denture base. Newly developed device was used for measuring denture retention. After the retention was measured. We treated internal surface of test denture base with $50{\mu}m\;Al_2O_3$ powder, under 90psi, for 1 minute. Then the retention was measured again. The result was analyzed with K-S test, one-way ANOVA test and independent t-test to deter mine the significant differences as the 95% level of confidence. The results are as follows : In cases of without internal surface treatment, the retention was increased in order of $Vitallium^{(R)},\;Biosil^{(R)},\;Vertex CP^{(R)}$ and Lucitone $199^{(R)}$. Except between Vertex $CP^{(R)}$ and $Biosil^{(R)}$, retention of the other materials was significantly different (p<0.05). After the treatment of internal surface, the retention was increased in order of $Vitallium^{(R)},\;Biosil^{(R)},\;Lucno\;199^{(R)},\;Vertex\;CP^{(R)}$. Except between Lucitone $199^{(R)}$ and Vertex $CP^{(R)}$, $Vitallium^{(R)}$ and $Biosil^{(R)}$ the retention of remaining groups was significantly different each other (p<0.05). In the matter of each material, after the internal surface treatment the retention was increased with Vertex $CP^{(R)},\;Biosil^{(R)}\;and\;Vitallium^{(R)}$ and the value of differences were statistically significant. When we compare the retention of resin and metal denture base, the retention of both denture bases increased significantly with internal surface treatment, and resin denture base showed better retention. As the results show, selecting denture base material could be an important choice of complete denture treatment. To increase denture retention, internal surface treatment can be considered as a possible method.

  • PDF

주석과 주석합금도금 (Trend of Sn and Sn Alloy plating)

  • 김유상;설필수
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.175-175
    • /
    • 2016
  • Sn도금액은 강산에서는 $Sn^{2+}$, 강알칼리에서는 $Sn^{4+}$석출이 안정하다. 중성영역은 도금액에 $Sn^{2+}$침전을 방지하기 위하여 착화제가 필요하다. 기록에 남아 있는 가장 오래된 Sn도금은 1856년 Gore가 4가의 주석산염을 사용한 알칼리성용액이다. 그 후 50~60년 사이에 2가의 염화주석($SnCl_2$)과 KOH에 Cyan 등의 착화제를 첨가한 도금액이 발표되었다. 최초의 실용적인 알칼리주석용액은 1931년 Oplinger의 4가 주석산 염으로서, $CH_3COONa$를 완충제로 사용하였고, $Sn^{2+}$을 산화시키기 위하여 과산화물이나 과 붕산염을 첨가하였다. 알칼리성 Sn용액은 Natrium용액과 Kalium용액이 있지만, Kalium염이 용해성이 좋고, Sn농도를 높여 전류밀도를 높일 수 있다. 알칼리성용액은 도금속도가 산성용액의 1/2로 되고, 음극효율도 80~90% 정도 낮아, 두꺼운 피막이나 생산성을 중시하는 부품에는 적합하지 않다. 초기의 산성용액은 Sn의 정련목적으로 사용되었고, Pb정련에 사용된 Fluor규산용액에 Gelatine을 첨가하였다. Mathers는 Cresol산을 첨가하여 미량의 Cresol포화용액을 사용하여 고속으로 두껍게 석출시킬 수 있었다. 독일의 Schloetter도 다양한 방향족 술폰산으로써 반 광택피막을 실현하였다. 산성Sn도금액은 첨가제에 어떠한 유기화합물을 사용하는가는 도금장치나 석출상태로써 결정할 수 있다. Hothersall과 Bradshaw는 Cresol술폰산을 첨가하여 도금액 안정성 향상을 발견했다. Cresol술폰산은 $Sn^{2+}$의 안정제이며, Gelatine은 분산제기능을 한다. 붕 불화용액은 Sn농도를 높일 수 있고, $2{\sim}12A/dm^2$의 고 전류밀도의 도금이 가능하다. 1937년 Schloetter가 개발하여 미국의 제철회사에서 사용되었다. Sn-Ni도금은 Ni도금보다도 뛰어난 내식성이 있기 때문에 자전거, 자동차부품에 사용되고 있다. 실용도금액은 1951년 Parkinson이 발표한 HBF/HCL용액이다. $SnCl_2$산성용액에서 표준전위는 -0.136V인데 비하여, Ni이온의 표준전위는 -0.25V이다. HF용액에서는 불화물이온이 $Sn^{2+}$의 석출전위를 (-)방향으로 이동시켜서 합금석출이 가능하다. Sn-Co도금은 Cr도금의 색조에 가깝고, 장식목적으로 사용된다. Cr도금 대체용으로 사용된다. 내마모성이나 내식성은 Cr도금보다도 떨어지기 때문에 장식목적에 한정된다. 1953년 Parkinson은 Sn-Ni도금연구에서 동일한 용액조성으로부터 Co 30%를 석출시켰다. Sn-Zn도금은 방식도금으로서 자동차부품에 많이 사용되고 있다. Sn과 Zn의 표준전위는 서로 멀리 떨어져 있기 때문에 산성용액에서는 공석될 수 없다. 1980년대에 들면서, 방식Cd(Cadmium)도금의 독성 때문에 Sn-Zn도금을 재인식 하게 되었다. 1957년 Vaid 등이 No Cyan도금액을 발표했다. 그 후 러시아의 연구자가 안정한 도금액을 연구하였고, Srivastava와 Muckergee가 1976년에 종합하였다.

  • PDF

플라즈마 용사 및 전자빔 물리기상 증착법으로 제조된 4YSZ 코팅의 고온마찰마모 거동 (High Temperature Tribology Behavior of 4YSZ Coatings Fabricated by Air Plasma Spray (APS) and Electron Beam Physical Vapor Deposition (EB-PVD))

  • 양영환;박찬영;이원준;김선주;이성민;김성원;김형태;오윤석
    • 한국표면공학회지
    • /
    • 제46권6호
    • /
    • pp.258-263
    • /
    • 2013
  • 4 mol% Yttria-stabilized zirconia (4YSZ) coatings are fabricated by Air Plasma Spray (APS) and Electron Beam Physical Vapor Deposition (EB-PVD) with top coating of thermal barrier coating (TBC). NiCrAlY based bond coat is prepared as 150 ${\mu}m$ thickness by conventional APS (Air Plasma Spray) method on the NiCrCoAl alloy substrate before deposition of top coating. Each 4YSZ top coating shows different tribological behaviors based on the inherent layer structures. 4YSZ by APS which has splat-stacked structure shows lower friction coefficient but higher wear rate than 4YSZ by EB-PVD which has columnar structure. For 4YSZ by APS, such results are expected due to the sliding wear accompanied with local delamination of splats.

전자빔을 이용한 물리기상증착법으로 제조된 열차폐용 4 mol% YSZ 코팅의 내열특성 (Thermal Durability of 4YSZ Thermal Barrier Coating Deposited by Electron Beam PVD)

  • 박찬영;양영환;김성원;이성민;김형태;임대순;장병국;오윤석
    • 한국분말재료학회지
    • /
    • 제20권6호
    • /
    • pp.460-466
    • /
    • 2013
  • 4 mol% Yttria-stabilized zirconia (4YSZ) coatings with $200{\mu}m$ thick are fabricated by Electron Beam Physical Vapor Deposition (EB-PVD) for thermal barrier coating (TBC). $150{\mu}m$ of NiCrAlY based bond coat is prepared by conventional APS (Air Plasma Spray) method on the NiCrCoAl alloy substrate before deposition of top coating. 4 mol% YSZ top coating shows typical tetragonal phase and columnar structure due to vapor phase deposition process. The adhesion strength of coating is measured about 40 MPa. There is no delamination or cracking of coatings after thermal cyclic fatigue and shock test at $850^{\circ}C$.

고에너지 볼 밀링을 이용한 Y-산화물 분산 Fe-기초내열합금 분말의 합성 및 미세조직 특성 (Synthesis and Microstructure of Fe-Base Superalloy Powders with Y-Oxide Dispersion by High Energy Ball Milling)

  • 임다미;박종관;오승탁
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.386-390
    • /
    • 2015
  • Fe-base superalloy powders with $Y_2O_3$ dispersion were prepared by high energy ball milling, followed by spark plasma sintering for consolidation. High-purity elemental powders with different Fe powder sizes of 24 and 50 mm were used for the preparation of $Fe-20Cr-4.5Al-0.5Ti-O.5Y_2O_3$ powder mixtures (wt%). The milling process of the powders was carried out in a horizontal rotary ball mill using a stainless steel vial and balls. The milling times of 1 to 5 h by constant operation (350 rpm, ball-to-powder ratio of 30:1 in weight) or cycle operation (1300 rpm for 4 min and 900 rpm for 1 min, 15:1) were applied. Microstructural observation revealed that the crystalline size of Fe decreased with an increase in milling time by cyclic operation and was about 15 nm after 3 h, forming a FeCr alloy phase. The cyclic operation had an advantage over constant milling in that a smaller-agglomerated structure was obtained. The milled powders were sintered at $1100^{\circ}C$ for 30 min in vacuum. With an increase in milling time, the sintered specimen showed a more homogeneous microstructure. In addition, a homogenous distribution of Y-compound particles in the grain boundary was confirmed by EDX analysis.

Surface Properties, Friction, Wear Behaviors of the HOVF Coating of T800 Powder and Tensile Bond Strength of the Coating on Ti64

  • Cho, T.Y.;Yoon, J.H.;Joo, Y.K.;Cho, J.Y.;Zhang, S.H.;Kang, J.H.;Chun, H.G.;Kwon, S.C.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2008년도 추계학술대회 초록집
    • /
    • pp.11-12
    • /
    • 2008
  • Micron-sized Co-alloy T800 powder was coated on Inconel718 (IN718) using high velocity oxygen fuel (HVOF) thermal spraying by the optimal coating process (OCP) determined from the best surface hardness of 16 coatings prepared by Taguchi program. The surface hardness improved 140-160 % from 399 Hv of IN718 to 560-630 Hv by the coating. Porosity of the coating was 1.0-2.7 %, strongly depending on spray parameters. Both friction coefficients (FC) and wear traces (WT) of the coating were smaller than those of IN718 substrate at both $25^{\circ}C$ and $538^{\circ}C$. FC and WT of IN718 and coating decreased with increasing the surface temperature. Tensile bond strength (TBS) and fracture location (FL) of Ti64/T800 were 8,770 psi and near middle of T800 coating respectively. TBS and FL of Ti64/NiCr/T800 were 8,740 psi and near middle of T800 coating respectively. This showed that cohesion of T800 coating was 8,740-8,770 psi, and adhesion of T800 on Ti64 and NiCr was stronger than the cohesion of T800.

  • PDF

표면 처리법에 따른 치과용 합금과 열중합형 레진 간의 결합 강도에 관한 연구 (EFFECT OF SURFACE TREATMENTS ON THE BOND STRENGTH OF DENTURE BASE RESINS TO DENTAL ALLOY)

  • 이주희;정은민;장복숙;정동준;허성주;한동후;심준성
    • 대한치과보철학회지
    • /
    • 제40권4호
    • /
    • pp.344-351
    • /
    • 2002
  • The purpose of this study is to compare tensile bond strength between Cr-Co alloy and three denture base resins after surface treatment. Following the manufacturer's instructions, 180 bonded specimens were made from three denture base resins (Lucitone 199. Paladent 20. POSS resin) and three surface treatment methods (sandblasting. metal primer. silicoating) 20 samples were made in each group and a half was ther-mocycled 1000 times between $5^{\circ}C$ and $55^{\circ}C$. The tensile bond strength was measured using an Instron with 5mm/min crosshead speed. Data was analyzed with one-way ANOVA, T-test and Duncan test. The results were as follows : 1. Samples with metal primer coating had significantly high tensile bond strength than the other surface treated groups (p<.05). Significantly low tensile bond strength was shown in sand blasted groups (p<.05). 2. No significant difference was observed in metal primer coating groups before and after ther-mocycling (p>.05) 3. Tensile bond strength was decreased in silicoated samples after thermocycling (p<.05). 4. Of the surface treated groups with metal primer, Lucitone 199 had the greatest bond strength and POSS resin and Paladent 20 were followed (p<.05). 5. Of the surface treated groups with silicoating, POSS resin and Lucitone 199 had greater bond strength than Paladent 20 (p<.05).

In vitro evaluation of the bond strength between various ceramics and cobalt-chromium alloy fabricated by selective laser sintering

  • Bae, Eun-Jeong;Kim, Hae-Young;Kim, Woong-Chul;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권4호
    • /
    • pp.312-316
    • /
    • 2015
  • PURPOSE. This study aimed to present the clinical applicability of restorations fabricated by a new method, by comparing the bond strength of between ceramic powder with different coefficient of thermal expansion and alloys fabricated by Selective laser sintering (SLS). MATERIALS AND METHODS. Fifty Co-Cr alloy specimens ($25.0{\times}3.0{\times}0.5mm$) were prepared by SLS and fired with the ceramic ($8.0{\times}3.0{\times}0.5mm$) (ISO 9693:1999). For comparison, ceramics with different coefficient of thermal expansion were used. The bond strength was measured by three-point bending testing and surfaces were observed with FE-SEM. Results were analyzed with a one-way ANOVA (${\alpha}$=.05). RESULTS. The mean values of Duceram Kiss ($61.18{\pm}6.86MPa$), Vita VM13 ($60.30{\pm}7.14MPa$), Ceramco 3 ($58.87{\pm}5.33MPa$), Noritake EX-3 ($55.86{\pm}7.53MPa$), and Vintage MP ($55.15{\pm}7.53MPa$) were found. No significant difference was observed between the bond strengths of the various metal-ceramics. The surfaces of the specimens possessed minute gaps between the additive manufactured layers. CONCLUSION. All the five powders have bond strengths higher than the required 25 MPa minimum (ISO 9693); therefore, various powders can be applied to metal structures fabricated by SLS.

Cobalt-Chromium 합금의 표면처리가 4-META/MMA-TBB 레진과의 접착에 미치는 영향 (EFFECT OF COBALT-CHROMIUM ALLOY SURFACE TREATMENT WHEN BONDING WITH 4-META/MMA-TBB RESIN)

  • 진재식;김교한;이청희;조광헌
    • 대한치과보철학회지
    • /
    • 제38권4호
    • /
    • pp.510-525
    • /
    • 2000
  • The effects of pretreatment of Co-Cr alloy, including two adhesive primers that contain either MDP or MAC-10, and silicoating on the bond The result sobtained as follows; o Strength of 4-META/MMA-TBB resin were investigated using FT-IR, SEM, and EDAX. o In the SEM observation of surface morphologies, the sandblasted specimen exibited a very rough surface, whereas the surfaces of the two groups primed with either MDP or MAC-10 were covered with a layer of primer, and the surface morphology of the silicoated specimen remained almost the same after sandblasting. o Before the thermocycling tests, the group treated with MDP demonstrated the highest mean tensile bond strength and the sandblasted group showed the lowest bond strength. o After 20,000 thermocyling, the mean tensile bond strength of the sandblasted group exhibited a 50% reduction in bond strength, while the others showed a $20\sim30%$ reduction. o Observation of the metal-resin interface revealed that in all groups the resin permeated the rough surface formed by sandblasting thereby producing a mechanical bond between the metal and the resin. It was also found that thermocycling resulted in a gap formation at the metal-resin interface of the specimens, and the sandblasted group exhibited a larger gap width than the other groups. o In fracture mode, all specimens indicated a cohesive fracture within the resin before thermocycling. However, thermocyling produced adhesive failure at the edge of the resin-metal interface in most specimens. The sandblasted group, which exhibited the lowest bond strength after thormocycling, also demonstrated the largest area of adhesive failure.

  • PDF

철계 비동일분율 고엔트로피 합금의 인장 강도에 미치는 소결 조건 영향 (Effect of Sintering Condition on Tensile Strength of Fe-based Non-equiatomic High Entropy Alloy)

  • 서남혁;전준협;김광훈;박정빈;손승배;이석재
    • 한국분말재료학회지
    • /
    • 제28권3호
    • /
    • pp.221-226
    • /
    • 2021
  • We fabricate the non-equiatomic high-entropy alloy (NE-HEA) Fe49.5Mn30Co10Cr10C0.5 (at.%) using spark plasma sintering under various sintering conditions. Each elemental pure powder is milled by high-energy ball milling to prepare NE-HEA powder. The microstructure and mechanical properties of the sintered samples are investigated using various methods. We use the X-ray diffraction (XRD) method to investigate the microstructural characteristics. Quantitative phase analysis is performed by direct comparison of the XRD results. A tensile test is used to compare the mechanical properties of small samples. Next, electron backscatter diffraction analysis is performed to analyze the phase fraction, and the results are compared to those of XRD analysis. By combining different sintering durations and temperature conditions, we attempt to identify suitable spark plasma sintering conditions that yield mechanical properties comparable with previously reported values. The samples sintered at 900 and 1000℃ with no holding time have a tensile strength of over 1000 MPa.