• Title/Summary/Keyword: Co-contaminants

Search Result 200, Processing Time 0.024 seconds

CO2 sequestration and heavy metal stabilization by carbonation process in bottom ash samples from coal power plant

  • Ramakrishna., CH;Thriveni., T;Nam, Seong Young;kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.74-83
    • /
    • 2017
  • Coal-fired power plants supply roughly 50 percent of the nation's electricity but produce a disproportionate share of electric utility-related air pollution. Coal combustion technology can facilitate volume reduction of up to 90%, with the inorganic contaminants being captured in furnace bottom ash and fly ash residues. These disposal coal ash residues are however governed by the potential release of constituent contaminants into the environment. Accelerated carbonation process has been shown to have a potential for improving the chemical stability and leaching behavior of bottom ash residues. The aim of this work was to quantify the volume of $CO_2$ that could be sequestrated with a view to reducing greenhouse gas emissions and stabilize the contaminated heavy metals from bottom ash samples. In this study, we used PC boiler bottom ash, Kanvera reactor (KR) slag and calcined waste lime for measuring chemical analysis and heavy metals leaching tests were performed and also the formation of calcite resulting from accelerated carbonation process was investigated by thermo gravimetric and differential thermal analysis (TG/DTA).

The Effect of Nutrient Amendments on Biodegradability of Kerosene and Growth of Kerosene-degrading Microorganisms (영양원 변화가 Kerosene 분해율 및 분해균주 성장에 미치는 영향)

  • Chung, Kyu-Hyuck
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.7-12
    • /
    • 1999
  • Bioremediation is the technology to harness nature's biodegradative capabilities to remove or detoxify pollutions that threaten public health as environmental contaminants. Composting may become one of major bioremediation technologies for treating soils contaminated with petroleum if the fate of contaminants during composting is better understood Most composting research of petroleum was primarily focused on removing contaminant by optimizing composting conditions. Accordingly, laboratory feasibility studies may be useful to establish a realistic basis in co-composting complex substrate such as petroleum hydrocarbons. The purpose of this study was to assess the optimal conditions of kerosene biodegradation following supplementation with nutrient amendments under simulated composting conditions. Although it increased the growth of bacterial consortium, addition of co-substrates 0.5%(w/v) such as acetic acid, citric acid, glucose, and malic acid was not beneficial. Combination of nitrogen and phosphorous source enhanced kerosene biodegradation and reduced VOC evolution. These results showed that kerosene was able to utilize in bioremediation technology.

  • PDF

Adaptive method for the purification of zinc and arsenic ions contaminated groundwater using in-situ permeable reactive barrier mixture

  • Njaramba, Lewis Kamande;Nzioka, Antony Mutua;Kim, Young-Ju
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.283-288
    • /
    • 2020
  • This study investigated the purification process of groundwater contaminated with zinc and arsenic using a permeable reactive barrier with a zero-valent iron/pumice mixture. We determined the removal rates of the contaminants for 30 days. In this study, column reactor filled with the zero-valent iron/pumice reactive mixture was used. Experimental results showed that the mixture exhibited an almost complete removal of the zinc and arsenic ions. Arsenic was removed via co-precipitation and adsorption processes while zinc ions were asorbed in active sites.The purification process of water from the metal ionscontinued for 30 days with constant hydraulic conductivity because of the enhanced porosity of the pumice and interparticle distance between the zero-valent iron and pumice. Contaminants removal rates and the remediation mechanism for each reactive system are described in this paper.

Development of Human Exposure and Risk Assessment System for Chemicals in Fish and Fishery Products (수산생물 중 유해물질의 인체 노출 및 위해평가 시스템 개발)

  • Lee, Jaewon;Lee, Seungwoo;Choi, Minkyu;Lee, Hunjoo
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.454-461
    • /
    • 2021
  • Background: Fish and fishery products (FFPs) unintentionally contaminated with various environmental pollutants are major exposure pathways for humans. To protect human health from the consumption of contaminated FFPs, it is essential to develop a systematic tool for evaluating exposure and risks. Objectives: To regularly, accurately, and quickly evaluate adverse health outcomes due to FFPs contamination, we developed an automated dietary exposure and risk assessment system called HERA (the Human Exposure and Risk Assessment system for chemicals in FFPs). The aim of this study was to develop an overall architecture design and demonstrate the major features of the HERA system. Methods: For the HERA system, the architecture framework consisted of multi-layer stacks from infrastructure to fish exposure and risk assessment layers. To compile different contamination levels and types of seafood consumption datasets, the data models were designed for the classification codes of FFP items, contaminants, and health-based guidance values (HBGVs). A systematic data pipeline for summarizing exposure factors was constructed through down-scaling and preprocessing the 24-hour dietary recalls raw dataset from the Korea National Health and Nutrition Examination Survey (KNAHES). Results: According to the designed data models for the classification codes, we standardized 167 seafood items and 2,741 contaminants. Subsequently, we implemented two major functional workflows: 1) preparation and 2) main process. The HERA system was developed to enable risk assessors to accumulate the concentration databases sustainably and estimate exposure levels for several populations linked to seafood consumption data in KNAHES in a user-friendly manner and in a local PC environment. Conclusions: The HERA system will support policy-makers in making risk management decisions based on a nation-wide risk assessment for FFPs.

Case Study of Soil Remediation by Mobile Soil Washing Instillation - Implemetation on Fluoride comtaminated soil in kitakyushu, Japan - (이동식 토양세척설비를 이용한 오염토양 복원 사례 - 일본 키타큐슈시 불소오염토 적용을 중심으로 -)

  • Oh, Seung-Hoon;Cheong, Jun-Gyo;Chang, Chung-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.268-276
    • /
    • 2008
  • The status of contaminated soils vary widely ; therefore, the techniques and equipment applicable to the soil concerned should be selected and used after careful consideration. Hyundai Soil Washing is physical-chemical separation based on mining and mineral processing principles for removing a broad range of organic and inorganic contaminants from soil. Mobile plant(capacity 15 tons./hr) was installed for this project. The goals of this project were 1) to verify the applicability of the washing process, which showed reliable results in the pilot plant with various kind of contaminated soils and 2) to promote recycling of the washed soil as a backfill on site. The results revealed that $F^-$ and $Pb^{2+}$ in the soil were effectively washed out to a certain level which washed soil was acceptable for recyeling.

  • PDF

Risk analysis of dioxin in human breast milk

  • Choi, Shin-Ai;Han, Jee-Yeun;Park, Jong-Sei
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.160.1-160.1
    • /
    • 2003
  • Persistent organic pollutants (POPs) have spread throughout the global environment to threaten human health and damage ecosystems. with evidence of POPs contamination in wildlife, human blood. and breast milk documented worldwide. Breast milk is an ideal medium for assessing exposures to POPs. POPs enter humans largely as contaminants of dietary animal products, where they sequester in adipose tissue, serum, and breast milk and equilibrate at similar levels on a fat weight basis. (omitted)

  • PDF

Optimization of Outdoor Cultivation of Spirulina platensis and Control ofContaminant Organisms (Spirulina platensis의 옥외배양 최적화 및 오염생물 구제)

  • Kim, Choong-Jae;Jung, Yun-Ho;Choi, Gang-Guk;Park, Yong-Ha;Ahn, Chi-Yong;Oh, Hee-Mock
    • ALGAE
    • /
    • v.21 no.1
    • /
    • pp.133-139
    • /
    • 2006
  • Outdoor cultivation of cyanobacterium Spirulina platensis was carried out for 40 days in a batch mode. A half concentration of the SOT based on the underground water was used as culture medium. Working volume was 5.7 tons with 0.2 m depth. During cultivation, mean water temperature, DO and light intensity were all in proper conditions for the S. platensis growth. The adjustment of pH to over 10 with Na2CO3 and addition of the 1.5% natural salt were very effective to delete contaminant organisms, Chlamydomonas moewusii and Chlorella minutissima occurred one after the other in the culture. The mean productivity of the biomass based on the dry cell weight from 14 to 25 days, after the contaminants were deleted, was 7.8 g ·m–2· d–1, which was relatively high productivity in that a half concentration of the SOT was used for the culture. Underground water used in the culture minimized contaminants invasion and addition of the 1.5% natural salt was effective to delete contaminants as well as acted as mineral supplement in outdoor cultivation of S. platensis. Harvesting using the floating activity of S. platensis was effective from mass floating in day time after overnight without agitation and illumination.

Distribution and Behavior of Mixed Contaminants, Explosives and Heavy Metals, at a Small Scale Military Shooting Range (국내 소규모 군사격장 복합오염물질(화약물질 및 중금속)의 분포 및 거동)

  • Park, Seokhyo;Bae, Bumhan;Kim, Minkyung;Chang, Yoonyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.523-532
    • /
    • 2008
  • A phase II site investigation and feasibility study was conducted at a military mortar shooting range near the demilitarized zone (Kyunggi, South Korea) to assess the extent of contaminants migration to the nearby Imjin river in which a flood control dam is under construction. The results showed that silty-clay soils around target areas were co-contaminated with heavy metals (Cd, Cu, and Pb) and explosives (HMX, RDX, and TNT). The total amount of contaminant was estimated to be 497.1 kg-RDX, 20.6 kg-HMX, 1.4 kg-TNT, 35.2 kg-Cd, 4,331 kg-Cu, and 5,115 kg-Pb, respectively. Both heavy metals and explosives were almost equally distributed on each soil particle size fraction. Neither subsurface soil samples nor ground water samples showed signs of contamination above the environmental criteria. The major migration route of contaminants was soil particles in surface run-off during rain at which a mass discharge rate of 30.0 mg-RDX/hour was observed.

Laser decontamination for radioactive contaminated metal surface: A review

  • Qian Wang;Feisen Wang;Chuang Cai;Hui Chen;Fei Ji;Chen Yong;Dasong Liao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.12-24
    • /
    • 2023
  • With the improvement of laser technology, the strategic needs of efficient and precise decontamination of various components in nuclear application units can be fulfilled by laser decontamination. The surface contaminants of nuclear facilities mainly exist both as loose contaminated layer and fixed oxide layer. The types of radionuclides and contamination layer thickness are closely related to the operation status of nuclear facilities, which have an important influence on the laser decontamination process. This study reviewed the mechanism of laser surface treatment and the influence of laser process parameters on the decontamination thickness, decontamination factor, decontamination efficiency and the distribution of aerosol particle. Although multiple studies have been performed on the mechanism of laser processing and laser decontamination process, there are few studies on the microscopic process mechanism of laser decontamination and the influence of laser decontamination on surface properties. In particular, the interaction between laser and radioactive contaminants needs more research in the future.

Combined Effect of 2,4,6-trinitrotoluene(TNT) and Cadmium on Uptake and Phytotransformation of TNT by Abutilion avicennae (TNT(2,4,6-trinitrotoluene)와 카드뮴의 복합오염이 어저귀의 TNT흡수 및 생물학적 전환에 미치는 영향)

  • Kim, Sun-Young;Bae, Bum-Han;Chang, Yoon-Young;Lee, In-Sook
    • The Korean Journal of Ecology
    • /
    • v.25 no.3 s.107
    • /
    • pp.139-144
    • /
    • 2002
  • Most of army depots contaminated with co-contaminants, 2,4,6-trinitrotoluene(TNT) and heavy metals. In phytoremediation for the TNT, heavy metals may inhibit mineralization, transformation and sequestration of TNT by the plant. We studied effect of cadmium on TNT degradation and transformation by Abutilion avicennae in hydroponic cultures. When cultured in 20 mgTNT/L and 1.3 mgCd/L, the plant displayed phytotoxicities; reduction of leaf fresh, leaf roil, chlorosis, leaf loss and fresh weight loss. Phytotoxicity was severer in the combined contaminants than in single contaminant. Because A. avicennae uptake just a little cadmium, 1.3 mgCd/L included in the TNT medium did not influece significantly TNT transformation, translocation and distribution by A. avicennae. Therefore, the soil solution containing cadmium would not affect TNT degradation by Abutilion avicennae in Army depots polluted with TNT.