• 제목/요약/키워드: Co-catalytic activity

검색결과 407건 처리시간 0.028초

능금산법으로 제조된 페롭스카이트형 산화물에서 벤젠의 촉매연소반응 (Catalytic Combustion of Benzene over Perovskite-type Oxides Prepared Using Malic Acid Method)

  • 정원영;홍성수
    • 청정기술
    • /
    • 제18권3호
    • /
    • pp.259-264
    • /
    • 2012
  • 페롭스카이트형 산화물을 능금산법으로 합성하여 TG/DTA, XRD, XPS, TEM 및 $H_2$-TPR 등에 의해 특성분석을 하였고, 벤젠의 연소반응에서의 활성을 조사하였다. 대부분의 촉매들은 페롭스카이트 결정구조를 잘 가지고 있었으며 15에서 70 nm의 크기를 나타내었다. $LaMnO_3$ 촉매가 가장 높은 활성을 보여주었고 $350^{\circ}C$에서 거의 100%의 전환율을 나타내었다. 반응활성을 증가시키기 위해 페롭스카이트 산화물의 A-와 B-위치에 다른 금속이온의 치환을 행하였다. $LaMnO_3$ 촉매의 A-위치에 Sr을 일부분 치환시키면 벤젠의 전환율이 증가하였다. 또한, B-위치에 Co 및 Cu 이온의 치환 역시 촉매 활성을 증가시켰고, $LaMn_{1-x}B_xO_3$ (B = Co, Fe, Cu)형 페롭스카이트에서 촉매활성은 Co > Cu > Fe의 순서로 감소하였다.

Improvement in Catalytic Activity of Ag Catalyst via Simple Mixing with Carbon

  • Choun, Myounghoon;Baek, Ji Yun;Eom, Taehyoung
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권4호
    • /
    • pp.331-335
    • /
    • 2019
  • In this study we investigate catalytic activity and selectivity of mixture of Ag and ketjenblack according to their ratios by product analysis and electrochemical experiments, such as cyclic voltammetry, linear sweep voltammetry and chronoamperometry. We reveal that catalytic activity toward CO2 reduction to CO is improved by simple mixing Ag nanoparticle and ketjenblack because addition of ketjenblack suppresses aggregation of Ag nanoparticles and brings increase in electrochemical active surface area. However, excess amount of ketjenblack rather inhibit the CO2 reduction to CO. These observations provide clues to develop highly active Ag catalyst or electrode toward electrochemical reduction of CO2.

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction III. Modification of $Mo/γ-Al_2O_3$ Catalyst with Iron Group Metals

  • 박진남;김재현;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권12호
    • /
    • pp.1233-1238
    • /
    • 2000
  • $Mo/{\gamma}-Al_2O_3catalysts$ modified with Fe, Co, and Ni were prepared by impregnation method and catalytic activity for water gas shift reaction was examined. The optimum amount of Mo loaded for the reaction was 10 wt% $MoO_3$ to ${\gamma}-Al_2O_3.$ The catalytic activity of $MoO_3/{\gamma}-Al_2O_3was$ increased by modifying with Fe, Co, and Ni in the order of Co${\thickapprox}$ Ni > Fe. The optimum amounts of Co and Ni added were 3 wt% based on CoO and NiO to 10 wt% $MoO_3/{\gamma}-Al_2O_3$, restectively. The TPR (temperature-programmed reduction) analysis revealed that the addition of Co and Ni enganced the reducibility of the catalysts. The results of both catalytic activity and TPR experiments strongly suggest that the redox property of the catalyst is an important factor in water gas shift reaction on the sulfided Mo catalysts, which could be an evidence of oxy-sulfide redox mechanism.

Chemical Doping of $TiO_2$ with Nitrogen and Fluorine and Its Support Effect on Catalytic Activity of CO Oxidation

  • Chakravarthy, G. Kalyan;Kim, Sunmi;Kim, Sang Hoon;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.142.2-142.2
    • /
    • 2013
  • The effect of substrate on catalytic activity of CO oxidation with transition metal Platinum nanoparticles on doped and undoped TiO2 was investigated. Titanium dioxide was doped chemically with non-metal anions including nitrogen and fluorine. Undoped TiO2 was synthesized via simple conventional sol-gel route. Thin films of titania were developed by spin coating technique and the characterization techniques SEM, XRD, UV-Vis Absorption Spectroscopy and XPS were carried out to examine the morphology of films, crystal phase, crystallites, optical properties and elemental composition respectively. XPS analysis from doped TiO2 confirmed that the nitrogen site were interstitial whereas fluorine was doped into TiO2 lattice substitutionally. Catalytic activity systems of Pt/doped-TiO2 and Pt/undoped-TiO2 were fabricated to reveal the strong metal-support interaction effect during catalytic activity of CO oxidation reactions. By arc plasma deposition technique, platinum nanoparticles with mean size of 2.7 nm were deposited on the thin films of doped and undoped titanium dioxide. The CO oxidation was performed with 40 Torr CO and 100 Torr O2 with 620 Torr He carrier gas. Turn over frequency was observed two to three folds enhancement in case of Pt/doped TiO2 as compared to Pt/TiO2. The electronic excitation and the oxygen vacancies that were formed with the doping process were the plausible reasons for the enhancement of catalytic activity.

  • PDF

금속 프탈로시아닌을 이용한 아세트알데히드의 촉매연소 (Catalytic Combustion of Acetaldehyde by Metal Phthalocyanines)

  • 서성규
    • 한국대기환경학회지
    • /
    • 제16권4호
    • /
    • pp.409-414
    • /
    • 2000
  • Catalytic combustion of acetaldehyde has been investigated as a representative of unpleasant odor by its reaction with metal-phthalocyanines(PC). The experiment was conducted at the reaction temperature of 200~41$0^{\circ}C$ and the concentratio of acetaldehyde in air at the range of 0.07~0.94 mole% The pretreated metal-PC has been characterized by UV-VIS and XRD analysis. According to this study catalytic activity of metal -PC was improved by air pretreatment at 45$0^{\circ}C$ for 1hr. Under this pretreatment condition Co-PC and Cu($\alpha$)-PC were destroyed and new metal oxides were formed such as Co3O4 and CuO respectively. However Zn-PC retained its basic structure even afte air pretreatment. The order of catalytic activity on acetaldehyde combustion was summarized as follows : Zn-PC$\alpha$)-PC. It was found that the complete combustin of acetaldehyde with Cu($\alpha$)-PC was accomplished at its concentrations below 0.2mole% (32$0^{\circ}C$) and 0.6 mole%(35$0^{\circ}C$) in air.

  • PDF

Catalytic Activity of $Nd_{1-x}Sr_xCoO_{3-y}$ on the Oxidation of Carbon Monoxide

  • Kim, Keu-Hong;Kim, Seong-Han;Lee, Dong-Hoon;Kim, Yoo-Young;Choi, Jae-Shi
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권1호
    • /
    • pp.35-39
    • /
    • 1991
  • The catalytic activity of $Nd_{1-x}Sr_xCoO_{3-y}$, $0{\leq}x{\leq}0.75$ and $0.001{\leq}y{\leq}0.103$, on the oxidation of carbon monoxide has been investigated from the structure analyses of the catalysts by X-ray diffraction and infrared spectroscopy and the measurements of the oxidation and adsorption rates of carbon monoxide. The catalytic activity is found to be correlated with Sr substitution (x) and nonstoichiometry (y). The oxidation power of carbon monoxide increases continuously with increasing Sr substitution without oxygen, but increases with Sr substitution up to x = 0.25 and then is almost constant at larger x values up to x = 0.75 with oxygen. This change of catalytic activity is explained by the oxidation-reduction properties of the catalyst due to the variation of nonstoichiometry.

Catalytic Activity of Au/$TiO_2$ and Pt/$TiO_2$ Nanocatalysts Prepared with Arc Plasma Deposition under CO Oxidation

  • Jung, Chan Ho;Kim, Sang Hoon;Sahu, Nruparaj;Park, Dahee;Yun, Jung Yeul;Ha, Heonphil;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.288-288
    • /
    • 2013
  • We report the catalytic activity of Au/$TiO_2$ and Pt/$TiO_2$ nanocatalysts under CO oxidation fabricated by arc plasma deposition (APD), which is a facile dry process with no organic materials involved. Using APD, the catalyst nanoparticles were well dispersed on $TiO_2$ powder with an average particle size (2~4 nm) well below that of nanoparticles prepared by the sol-gel method (10 nm). We found that the average particle size of the dispersed gold nanoparticles can be controlled by changing the plasma discharge voltage of APD. Accordingly, the amount of loaded gold on the $TiO_2$ powder increased with increasing discharge voltage, but the specific surface area of the Au/$TiO_2$ samples decreased. As for catalytic reactivity, Au/$TiO_2$ showed a higher catalytic activity than Pt/$TiO_2$ in CO oxidation. The catalytic activity of the Au/$TiO_2$ samples showed size dependence where higher catalytic activity occurred on smaller gold nanoparticles. The study suggests that APD is a simple way to fabricate catalytically active nanocatalysts.

  • PDF

The structures and catalytic activities of metallic nanoparticles on mixed oxide

  • 박준범
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.339-339
    • /
    • 2010
  • The metallic nanoparticles (Pt, Au, Ag. Cu, etc.) supported on ceria-titania mixed oxide exhibit a high catalytic activity for the water gas shift reaction ($H_2O\;+\;CO\;{\leftrightarrow}\;H_2\;+\;CO_2$) and the CO oxidation ($O_2\;+\;2CO\;{\leftrightarrow}\;2CO_2$). It has been speculated that the high catalytic activity is related to the easy exchange of the oxidation states of ceria ($Ce^{3+}$ and $Ce^{4+}$) on titania, but very little is known about the ceria titanium interaction, the growth mode of metal on ceria titania complex, and the reaction mechanism. In this work, the growth of $CeO_x$ and Au/$CeO_x$ on rutile $TiO_2$(110) have been investigated by Scanning Tunneling Microscopy (STM), Photoelectron Spectroscopy (PES), and DFT calculation. In the $CeO_x/TiO_2$(110) systems, the titania substrate imposes on the ceria nanoparticles non-typical coordination modes, favoring a $Ce^{3+}$ oxidation state and enhancing their chemical activity. The deposition of metal on a $CeO_x/TiO_2$(110) substrate generates much smaller nanoparticles with an extremely high activity. We proposed a mechanism that there is a strong coupling of the chemical properties of the admetal and the mixed-metal oxide: The adsorption and dissociation of water probably take place on the oxide, CO adsorbs on the admetal nanoparticles, and all subsequent reaction steps occur at the oxide-admetal interface.

  • PDF

질소산화물의 촉매반응에 의한 저감기술에 관한 연구 (A Stud on the Catalytic Removal of Nitric Oxide)

  • 홍성수;박종원;정덕영;박대원;조경목;오광중
    • 한국대기환경학회지
    • /
    • 제14권1호
    • /
    • pp.25-33
    • /
    • 1998
  • We have studied the reduction of NO by propane over perovskite-type oxides prepared by malic acid method. The catalysts were modified to enhance the activity by substitution by substitution of metal into A or B site of perovskite oxides. In addition, the reaction conditions, such as temperature, $O_2$ concentration, space velocity have been studed. In the $LaCoO_3$ type catalyst, the partial substitution of Ba, Sr into A site enhanced the catalytic activity in the reduction of NO. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3(x=0 \sim 1.9)$ catalyst, the partial substitution of Fe into B site enhanced the conversion of NO, but excess amount of Fe decreased the conversion of NO. The surface area and catalytic activity of perovskite catalysts prepared by malic acid method showed higher values than those of solid reaction method. In the $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$ catalyst, the conversion of NO increased with increasing $O_2$ concentration and contact time. The introduction of water into reactant feed decreased the catalytic activity.

  • PDF

졸-겔법에 의한 CuO-CeO2 복합 산화물 촉매의 제조 및 CO의 선택적 산화반응에 응용 (Preparation of CuO-CeO2 mixed oxide catalyst by sol-gel method and its application to preferential oxidation of CO)

  • 황재영;함현식
    • 한국응용과학기술학회지
    • /
    • 제34권4호
    • /
    • pp.883-891
    • /
    • 2017
  • 고분자 전해질 연료전지의 연료에 포함된 일산화탄소의 선택적 산화를 위하여, 귀금속 촉매를 대체하기 위한 CuO-$CeO_2$ 복합 산화물 촉매를 졸-겔법과 공침법으로 제조하였다. 졸-겔법으로 촉매 제조 시 Cu/Ce의 비와 가수분해 비를 변화시켰다. 제조한 촉매의 활성은 귀금속 촉매($Pt/{\gamma}-Al_2O_3$)와 비교하였다. Cu/Ce의 비를 변화시키면서 제조한 촉매 중 Cu/Ce의 비가 4:16인 촉매가 가장 높은 CO 전환율(90%)과 선택도(60%)를 나타내었다. 촉매의 제조에서 가수분해 비가 증가할수록 촉매 표면적이 증가하였고, 아울러 촉매 활성 또한 증가하였다. 공침법으로 제조한 촉매와 1wt% $Pt/{\gamma}-Al_2O_3$ 촉매의 가장 높은 CO 전환율은 각각 82% 및 81%인 반면, 졸-겔법으로 제조한 촉매의 경우는 90%가 얻어졌다. 이는 졸-겔법으로 제조한 촉매가 공침법으로 제조한 촉매나 귀금속 촉매보다 더 높은 촉매활성을 보임을 의미한다. CO-TPD 실험을 통하여, 낮은 온도($140^{\circ}C$)에서 CO를 탈착하는 촉매가 본 반응에서 더 높은 촉매활성을 보임을 알 수 있었다.