• Title/Summary/Keyword: Co-base alloy

Search Result 109, Processing Time 0.025 seconds

HVOF spray coating of WC-metal powder for the improvement of friction, wear and corrosion resistance of magnetic bearing shaft material of turbo blower (터보불로워 용 회전체 주축 소재의 마찰, 마모 및 부식 저항 향상을 위한 WC-metal 분말의 초고속화염용사코팅)

  • Joo, Y.K.;Yoon, J.H.;Cho, T.Y.;Chun, H.G.
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.7-11
    • /
    • 2013
  • High velocity oxy-fuel (HVOF) spray coating of WC-metal powder (powder) was carried out to improve the resistances of friction, wear and corrosion of magnetic bearing shaft material Inconel718 (In718) of turbo blower. A micron sized WC-metal powder (86.5% WC, 9.5% Co 4% Cr) was coated onto In718 surface using HVOF thermal spraying. During the spraying, the binder metals and alloy such as Co, Cr and Co-Cr alloy were molten and a small portion of WC particles were partially decomposed to $W_2C$ and free carbon at above its decomposition temperature of $1250^{\circ}C$. The free carbon and excessively sprayed oxygen formed carbon oxide gases, resulting a porous coating of porosity of $2.2{\pm}0.3%$. The surface hardness of substrate increased approximately three times from 400 Hv of In718 to $1260{\pm}30Hv$ of the coating The friction coefficients of the coating were approximately $0.33{\pm}0.03$ at $25^{\circ}C$ and $0.26{\pm}0.03$ at $450^{\circ}C$. These values were smaller than those of In718 substrate at both temperatures due to the lubrication from the free carbon and the cobalt oxide debris. The corrosion resistance of the coating was higher than that of In718 both in salt water of 3.5% NaCl and acid of 1 M HCl solutions, on the contrary, it was lower in base solution of 1 M NaOH. According to this study, the HVOF WC-metal powder coating is recommended for the durability improvement of magnetic bearing shaft of turbo blower.

Study on the Performance of Laser Welded joint of Aluminum alloys for Car Body

  • Kutsuna, Muneharu;Kitamura, Shuhei;Shibata, Kimihiro;Salamoto, Hiroki;Tsushima, Kenji
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.620-625
    • /
    • 2002
  • Considering the fuel consumption of car, a light structure of aluminum alloys is desired for car body nowadays. However, fusion welding of aluminum alloys has some problems of reduction of joint efficiency, porosity formation and hot cracking. ill the present work, investigation to improve the joint performance of laser welded joint has been carried out by addition of Cu, Ni, and Zr to A6N01 alloy welds. Aluminum alloy plate of 2.0mm in thickness with filler metal bar was welded by twin beam Nd:YAG laser facility (total power:5kW). The filler metals were prepared by changing the chemical compositions for adding the elements into the weld metal. Thirteen filler metal bars were prepared and pre-placed into the base metal before welding. Ar gas shielding with a flow rate of 10 l/min was used. The defocusing distance is kept at 0 mm. At travel speeds of 3 to 9 m/min and at laser power of 5kW (front beam 2kW rear beam 3kW), full penetration welds were obtained, whereas at travel speeds of 12 to 18 m/min and same power, partial penetration was observed. The joint efficiency of laser-welded joint was improved by the addition of Cu, Ni, and Zr due to the solid solution hardening, grain refining and precipitation hardening. The type of hardening has been further considered by metallurgical examination.

  • PDF

Study on the Performance of Laser Welded Joint of Aluminum Alloys for Car Body

  • Kutsuna, M.;Kitamura, S.;Shibata, K.;Sakamoto, H.;Tsushima, K.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.26-31
    • /
    • 2002
  • Considering the fuel consumption of car, a light structure of aluminum alloys is desired fer car body nowadays. However, fusion welding of aluminum alloys has some problems of reduction of joint efficiency, porosity formation and hot cracking. In the present work, investigation to improve the joint performance of laser welded joint has been carried out by addition of Cu, Ni, and Zr to A6NO 1 alloy welds. Aluminum alloy plate of 2.Omm in thickness with filler metal bar was welded by twin beam Nd: YAG laser facility (total power: 5kW). The filler metals were prepared by changing the chemical compositions for adding the elements into the weld metal. Thirteen filler metal bars were prepared and pre-placed into the base metal before welding. Ar gas shielding with a flow rate of 10 1/min was used. The defocusing distance is kept at 0 mm. At travel speeds off 3 to 9 and at laser power of 5kW (front beam 2kW rear beam 3kW), full penetration welds were obtained, whereas at travel speeds of 12 to 18 m/min and same power, partial penetration was observed. The joint efficiency of laser-welded joint was improved by the addition of Cu, Ni, and Zr due to the solid solution hardening, grain refining and precipitation hardening. The type of hardening has been further considered by metallurgical examination.

  • PDF

Microstructures and Mechanical Properties of GTD 111DS Welds by $CO_2$ Laser Welding ($CO_2$ 레이저를 이용한 GTD111DS 초합금 용접부의 미세조직과 기계적 성질)

  • Lee, Tack-Woon;Yang, Sung-Ho;Kim, Sang-Hun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.108-108
    • /
    • 2009
  • Precipitation hardening nickel base alloys strengthened by intermetallic compounds are extensively used to manufacture on the components of the hot section of gas turbine engines. To ensure structural stability and maintenance of strength properties for a long time, nickel alloys are normally subjected to complex alloying with elements to form ${\gamma}'$(gamma prime). Such alloys have a limited weldability, are normally welded in high temperature. However, laser welding have a merit that applies in room temperature as easy control of welding parameter and heat input. In this study, $CO_2$ laser welding is applied on STS304 plate with good ductility and precipitation hardening nickel base alloy (GTD111DS) used blade material. Also, several welding parameters are applied on powder, power and travel speed. There are no cracks in Rene 80 and IN 625 powder when STS304 plate is used. But IN 625 powder has no cracks and Rene 80 have some cracks in welds with GTD111DS substrate. Adjusting of welding parameter is tried to apply Rene 80 having a good strength compare to IN 625. In the result of adjusted welding parameter, optimized welding parameters are set with low power, low feed rate and high welding speed. Tensile strength of GTD111DS substrate with Rene 80 powder is same and over than the one of base metal in room temp and high temp($760^{\circ}C$).

  • PDF

A Study on Electron Beam Weldmetal Cross Section Shapes and Strength of Al 5052 Thick Plate (Al 5052 함금 후판재의 전자빔 용접부 단면 형상과 강도에 관한 연구)

  • Kim, In-Ho;Lee, Gil-Young;Ju, Jeong-Min;Park, Kyoung-Tae;Chun, Byong-Sun
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.73-79
    • /
    • 2009
  • This present paper investigated the mechanical properties and the microstructures of each penetration shapes classifying the conduction shape area and the keyhole shape area about electron beam welded 120(T)mm thick plated aluminum 5052 112H. As a result the penetration depth is increased linearly according to the output power, but the aspect ratio is decreased after the regular output power. In the conduction shape area, the Heat affected zone is observed relatively wider than the keyhole shape area. In the material front surface of the welded specimen, the width is decreased but the width in the material rear surface is increased. After the measuring the Micro Vikers Hardness, it showed almost similar hardness range in all parts, and after testing the tensile strength, the ultimate tensile strength is similar to the ultimate tensile strength of the base material in all the specimens, also the fracture point was generated in the base materials of all the samples. In the result of the impact test, impact absorbed energy of the Keyhole shape area is turned up very high, and also shown up the effect about four times of fracture toughness comparing the base material. In the last result of observing the fractographs, typical ductile fraction is shown in each weld metal, and in the basic material, the dimple fraction is shown. The weld metals are shown that there are no other developments of any new chemical compound during the fastness melting and solidification.

CYTOTOXICITY OF DENIAL CAST BASE METAL ALLOYS ON HUMAN ORAL KERATINOCYTES (구강점막 상피세포에 대한 치과 주조용 비귀금속 합금의 세포독성)

  • Choi, Young-Jin;Yook, Jong-In;Chung, Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.6
    • /
    • pp.717-729
    • /
    • 1999
  • Although many studies on the cytotoxicity of the dental cast base metal alloys and their components have been carried out, the results are rather conflicting because of the different type of cells used and the various experimental procedures taken. Recently a number of scientists have claimed that it would be preferable to focus on the use of cells from relevant specific location of the human bodies. Consequently, the primary cultured oral keratinocyte derived from oral mucous along with nickel chloride and several of widely used dental cast base metal alloys(two Ni-Cr alloys and one Co-Cr alloy)in domestic were selected for this study, from which 1) The amounts of released metal ions were determined using atomic absorption spectrometry, 2) The cytotoxicity of nickel chloride and dental cast base metal alloys was evaluated via MTT assay, and finally, 3) The amounts of released metal ions and the cytotoxicity of nickel chloride were correlated with the cytotoxicity of dental cast base metal alloys And, the results were summarized as follows; 1. Nickel ion from Ni-Cr alloys and Cobalt ion from Co-Cr alloys resulted in maximum releasing rate during first 2h hours, followed by a decrease in releasing rate with time. Chromium ion were found to be minimal in all alloys. 2. In cytotoxic test. with $40{\mu}M,\;80{\mu}M$ of nickel chloride, there were observed an increase in the relative cell number compared to control samples after 24 hours. With $160{\mu}M$, there was found to be no difference in the relative cell number with control, except that 48 hour showed a increase in relative cell number. With $320{\mu}M$, the relative cell number remained constant and decreased after 48 hours, and with $640{\mu}M$, a continuing decrease in relative cell number was observed throughout test period. 3 The sensitivity of primary cultured oral epithelium to nickel was lower compared to the cells used in other studies. 4. CB-80 Soft and Regalloy showed no cytotoxicity to primary cultured oral epithelium and New crown resulted in a slight cytotoxicity. In conclusion, it was shown that the primary cultured oral keratinocytes could be applied successfully as testing cells in cytotoxicity test. Futhermore, the dental cast base metal alloys used in this study were found to be biocompatible.

  • PDF

Fitting accuracy of ceramic veneered Co-Cr crowns produced by different manufacturing processes

  • von Maltzahn, Nadine Freifrau;Bernhard, Florian;Kohorst, Philipp
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.2
    • /
    • pp.100-106
    • /
    • 2020
  • PURPOSE. The purpose of this in vitro study was to evaluate the fitting accuracy of single crowns made from a novel presintered Co-Cr alloy prepared with a computer-aided design and computer-aided manufacturing (CAD/CAM) technique, as compared with crowns manufactured by other digital and the conventional casting technique. Additionally, the influence of oxide layer on the fitting accuracy of specimens was tested. MATERIALS AND METHODS. A total of 40 test specimens made from Co-Cr alloy were investigated according to the fitting accuracy using a replica technique. Four different methods processing different materials were used for the manufacture of the crown copings (milling of presintered (Ceramill Sintron-group_cer_sin) or rigid alloy (Tizian NEM-group_ti_nem), selective laser melting (Ceramill NPL-group_cer_npl), and casting (Girobond NB-group_gir_nb)). The specimens were adapted to a resin model and the outer surfaces were airborne-particle abraded with aluminum oxide. After the veneering process, the fitting accuracy (absolute marginal discrepancy and internal gap) was evaluated by the replica technique in 2 steps, before removing the oxide layer from the intaglio surface of the crowns, and after removing the layer with aluminum oxide airborne-particle abrasion. Statistical analysis was performed by multifactorial analysis of variance (ANOVA) (α=.05). RESULTS. Mean absolute marginal discrepancy ranged between 20 ㎛ (group_cer_npl for specimens of Ceramill NPL) and 43 ㎛ (group_cer_sin for crowns of Ceramill Sintron) with the oxide layer and between 19 ㎛ and 28 ㎛ without the oxide layer. The internal gap varied between 33 ㎛ (group_ti_nem for test samples of Tizian NEM) and 75 ㎛ (group_gir_nb for the base material Girobond NB) with the oxide layer and between 30 ㎛ and 76 ㎛ without the oxide layer. The absolute marginal discrepancy and the internal gap were significantly influenced by the fabrication method used (P<.05). CONCLUSION. Different manufacturing techniques had a significant influence on the fitting accuracy of single crowns made from Co-Cr alloys. However, all tested crowns showed a clinically acceptable absolute marginal discrepancy and internal gap with and without oxide layer and could be recommended under clinical considerations. Especially, the new system Ceramill Sintron showed acceptable values of fitting accuracy so it can be suggested in routine clinical work.

Study on the Cathodic Protectioin Behavior of Hot Water Boiler by Mg-Alloy Galvanic Anode (Mg 합금유전양긍에 의한 온수보일러의 음극방식거동에 관한 연구)

  • 정기철
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.115-121
    • /
    • 2000
  • As the development of industry water quality of river is going to bad because of waste water of an industrial complex and general home agricultural chemicals exhaust of $SO_3$ and CO gas acid rain and so on. Corrosion damage of boiler factory equipment and so forth occur quickly due to using of the polluted water resulting in increasing leak accident. Especially working life of hot water boiler using the polluted water becomes more short and energy loss increases. The cathodic protection method is the most economical and reliable one to prevent corrosion damage of steel structures. Mg-base alloys galvanic anode protection of cathodic protection method is suitable for than application of hot water boiler using water with high specific resistance such as tap water. This paper is studied on the cathodic protection characteristics of how water boiler. In tap water and 0.001mol/$\ell$ NaCl solution the characteristics of anodic polarization of Mg-base alloys galvanic anode and tube material is investigated the measurement of cathodic protection potential according to the time elaspsed is carried out.

  • PDF

Variation of Alloying Element Distribution and Microstructure due to Microsegregation in Ni-base Superalloy GTD 111 (니켈기 초내열 합금 GTD 111에서 편석에 의한 합금원소 분포 및 미세조직 변화)

  • Choi, Baig-Gyu;Kim, In-Soo;Do, Jeong-Hyeon;Jung, Joong-Eun;Jo, Chang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.35 no.6
    • /
    • pp.170-177
    • /
    • 2015
  • Segregation during solidification and homogenization during thermal exposure in GTD 111 were investigated. The microstructures of as-cast, standard heat-treated, and thermally exposed specimens were observed by SEM. A compositional analysis of each specimen was conducted by EDS. The dendrite core was enriched in W and Co, though lower levels of Ti and Ta were observed. An unexpected phase, in this case like the ${\eta}$ phase, was observed due to segregation near the ${\gamma}-{\gamma}^{\prime}$ eutectic in the standard heat-treated specimen. Segregation also induced microstructural evolution near the ${\gamma}-{\gamma}^{\prime}$ eutectic during the standard heat treatment. A quantitative analysis and microstructural observations showed that the thermal exposure at a high temperature enhanced the chemical homogeneity of the alloy.

Microstructure of Co-base superalloy prepared by a investment casting (정밀주조법으로 제조된 Co계 초내열 합금의 미세구조)

  • Lee, Jung-Il;Lee, Ho Jun;Cho, Hyun Su;Paeng, Jong Min;Park, Jong Bum;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.313-318
    • /
    • 2017
  • The microstructure of a cobalt-base superalloy (ECY768) obtained by an investment casting process was studied. This work focuses on the resulting microstructures arising from different melt and mold temperatures in normal industrial environmental conditions. The characterization of the samples was carried out using optical microscopy, field emission scanning electron microscopy and energy-dispersive spectroscopy. In this study, the as-cast microstructure is an ${\alpha}-Co$ (face-centered cubic) dendritic matrix with the presence of a secondary phase, such as $M_{23}C_6-type$ carbides precipitated at grain boundaries. These precipitates are the main strengthening mechanism in this type of alloy. Other minority phases, such as the MC-type phase, was also detected and their presence could be linked to the manufacturing process and environment.