• 제목/요약/키워드: Co-activation

검색결과 1,440건 처리시간 0.04초

자성막 CoPt의 자기상호작용이 활성화 부피와 면적에 미치는 영향 (Magnetic Interaction Effect on Activation Volume and Area of CoPt Magnetic Films)

  • 김현수;정순영;서수정
    • 한국자기학회지
    • /
    • 제23권6호
    • /
    • pp.188-192
    • /
    • 2013
  • 수직 자기기록 매체로 알려진 CoPt 자성막을 전기도금법으로 제작하여 자기상호작용이 활성화 부피와 면적에 미치는 영향을 조사하였다. 모든 시료의 상호작용 기구는 쌍극자 상호작용이었으며, 낮은 전류밀도에서 제작한 시료일수록 두께가 두꺼울수록 상호작용 세기가 증가하였다. 한편 활성화 부피는 낮은 전류밀도에서 제작한 시료가 더 컸으나 두께에 따른 증감현상은 뚜렷하지 않았다. 그러나 활성화 면적은 상호작용의 세기가 강할수록 전류밀도가 낮을수록 감소하는 경향을 보였다.

Effect of Activation Temperature on CO2 Capture Behaviors of Resorcinol-based Carbon Aerogels

  • Moon, Cheol-Whan;Kim, Youngjoo;Im, Seung-Soon;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.57-61
    • /
    • 2014
  • In this study, carbon aerogel (CA) was synthesized using a soft-template method, and the optimum conditions for the adsorption of carbon dioxide ($CO_2$) by the carbon aerogel were evaluated by controlling the activation temperature. KOH was used as the activation agent at a KOH/CA activation ratio of 4:1. Three types of activated CAs were synthesized at activation temperatures of $800^{\circ}C$(CA-K-800), $900^{\circ}C$(CA-K-900), and $1000^{\circ}C$(CA-K-1000), and their surface and pore characteristics along with the $CO_2$ adsorption characteristics were examined. The results showed that with the increase in activation temperature from 800 to $900^{\circ}C$, the total pore volume and specific surface area sharply increased from 1.2165 to $1.2500cm^3/g$ and 1281 to $1526m^2/g$, respectively. However, the values for both these parameters decreased at temperatures above $1000^{\circ}C$. The best $CO_2$ adsorption capacity of 10.9 wt % was obtained for the CA-K-900 sample at 298 K and 1 bar. This result highlights the importance of the structural and textural characteristics of the carbon aerogel, prepared at different activation temperatures on $CO_2$ adsorption behaviors.

Activation Volumes of Wall-Motion and Nucleation Processes in Co/Pd Multilayers

  • Choe, Sug-Bong;Shin, Sung-Chul
    • Journal of Magnetics
    • /
    • 제5권2호
    • /
    • pp.35-39
    • /
    • 2000
  • The correlation between the activation volumes of wall-motion and nucleation processes in Co/Pd multilayers has been investigated. Each activation volume was estimated from the field dependence of the wall-motion speed and the nucleation rate, respectively, based on time-resolved domain patterns grabbed by a MOKE microscope system. Both the activation volumes are changed in the same manner around $0.2\sim1.1\times10^{-17}cm^3$ with changes in the multilayered structure. Interestingly, the correlation between the activation volumes is sensitive to the multilayered structure; the wall-motion activation volume is smaller than the nucleation activation volume for a sample having a smaller number of repeats and a thinner Co-layer thickness, and vice versa. The correlation is closely related with the contrasting reversal modes; the process having the smaller activation volume dominates.

  • PDF

Effects of pore structures on electrochemical behaviors of polyacrylonitrile-based activated carbon nanofibers by carbon dioxide activation

  • Lee, Hye-Min;Kim, Hong-Gun;An, Kay-Hyeok;Kim, Byung-Joo
    • Carbon letters
    • /
    • 제15권1호
    • /
    • pp.71-76
    • /
    • 2014
  • Activated carbon nanofibers (ACNF) were prepared from polyacrylonitrile (PAN)-based nanofibers using $CO_2$ activation methods with varying activation process times. The surface and structural characteristics of the ACNF were observed by scanning electron microscopy and X-ray diffraction, respectively. $N_2$ adsorption isotherm characteristics at 77 K were confirmed by Brunauer-Emmett-Teller and Dubinin-Radushkevich equations. As experimental results, many holes or cavernous structures were found on the fiber surfaces after the $CO_2$ activation as confirmed by scanning electron microscopy analysis. Specific surface areas and pore volumes of the prepared ACNFs were enhanced within a range of 10 to 30 min of activation times. Performance of the porous PAN-based nanofibers as an electrode for electrical double layer capacitors was evaluated in terms of the activation conditions.

K2CO3 처리된 Coal Tar Pitch 활성탄 전극의 결정성 및 EDLC 성능 (Structural Characterization and EDLC-Electrode Performance of Coal-Tar-Pitch Activated Carbon Using K2CO3 Treatment)

  • 최푸름;정지철;임연수;김명수
    • 한국재료학회지
    • /
    • 제26권9호
    • /
    • pp.460-467
    • /
    • 2016
  • Activated carbons (ACs) have been used as EDLC (electric double-layer capacitor) electrode materials due to their high specific area, stability, and ecological advantages. In order to prepare ACs with high density and crystallinity, coal tar pitch (CTP) was activated by $K_2CO_3$ and the textural and electrochemical properties of the obtained ACs were investigated. Although the CTP ACs formed by $K_2CO_3$ activation had much smaller specific surface area and pore volume than did the CTP ACs formed by KOH activation, their volumetric specific capacitance (F/cc) levels as electrode materials for EDLC were comparable due to their higher density and micro-crystallinity. Structural characterization and EDLC-electrode performance were studied with different activation conditions of $CTP/K_2CO_3$ ratio, activation temperature, and activation period.

원전 방사화 폐기물 저감을 위한 저방사화 시멘트의 개발 (Development of Low-activation Cement for Decreasing the Activated Waste in Nuclear Power Plant)

  • 이빛나;이종석;민지영;이장화
    • 한국건설순환자원학회논문집
    • /
    • 제5권3호
    • /
    • pp.223-229
    • /
    • 2017
  • 원전 구조물에 주로 사용되는 중량 콘크리트의 경우 중성자에 오랜 시간 노출되면 콘크리트 자체가 방사선을 방출하는 방사화가 발생하게 된다. 이러한 경우 원전 구조물 해체시 많은 양의 방사성 폐기물이 발생되고 이를 처리하기 위한 비용이 큰 폭으로 증가하게 된다. 따라서, 본 연구에서는 원전 해체시 폐기물의 처리비용을 저감하기 위하여 방사화에 밀접한 관련이 있는 Eu 및 Co를 포함하고 있는 시멘트를 대상으로 저방사화 시멘트를 제작하였다. 또한, 저방사화 시멘트 개발을 위하여 원재료 수급부터 제조방법을 제안하였으며 이를 일반 시멘트 및 저발열 시멘트와 비교 분석하였다. 방사화 분석 결과 Eu는 검출되지 않았으며, Co는 3.75ppm으로 보통포틀랜드 시멘트보다 낮게 측정되었으며, 물리적 화학적 특성 역시 1종 보통포틀랜드 시멘트와 4종 저발열 포틀랜드 시멘트 기준에 부합하는 것으로 나타났다.

Chemical Activation Characteristics of Pitch-Based Carbon Fibers by KOH

  • Jang, Jeen-Seok;Lee, Young-Seak;Kim, In-Ki;Yim, Going
    • Carbon letters
    • /
    • 제1권2호
    • /
    • pp.69-75
    • /
    • 2000
  • Naphtha cracking bottom oil was reformed with heat treatment and then spun at $310^{\circ}C$. These pitch-based carbon fibers were carbonized at $1000^{\circ}C$ after oxidation at $280^{\circ}C$, for 90 min. These fibers were chemically activated with molar ratio of KOH/CF (1 : 1) at different temperatures ($250{\sim}900^{\circ}C$) for 1 hr. The process of activation was characterized with DTA, TGA, BET surface area and pore size distribution. The activation of fibers by KOH was performed by several process. One is the reduction process that carbon fiber was reacted with $K_2O$ produced from dehydration process above $400^{\circ}C$. The other is the process that $K_2CO_3$ was directly reacted with carbon fiber. At $800^{\circ}C$, the activation was performed by catalyzed mechanism that $K_2O$ was obtained from the reaction of metal potassium with $CO_2$, then was changed to $K_2CO_3$. At $870^{\circ}C$, the activation was also observed that activation mechanism was promoted by metal catalyst with $CO_2$ from decomposition of $K_2CO_3$. The specific surface area of prepared activated carbon fibers was dependent on the activation mechanism. The specific surface area was in the range of $1519{\sim}2000\;cm^3/g$ and was the largest prepared at $870^{\circ}C$. The pores developed were mostly micropores which was very narrow and uniform. The total pore volume was $0.58{\sim}0.77\;cm^3/g$.

  • PDF

Electromagnetic Interference Shielding Properties of CO2 Activated Carbon Black Filled Polymer Coating Materials

  • Hu, Quanli;Kim, Myung-Soo
    • Carbon letters
    • /
    • 제9권4호
    • /
    • pp.298-302
    • /
    • 2008
  • Carbon blacks could be used as the filler for the electromagnetic interference (EMI) shielding. The poly vinyl alcohol (PVA) and polyvinylidene fluoride (PVDF) were used as the matrix for the carbon black fillers. Porous carbon blacks were prepared by $CO_2$ activation. The activation was performed by treating the carbon blacks in $CO_2$ to different degrees of burnoff. During the activation, the enlargement of pore diameters, and development of microporous and mesoporous structures were introduced in the carbon blacks, resulting in an increase of extremely large specific surface areas. The porosity of carbon blacks was an increasing function of the degree of burn-off. The surface area increased from $80\;m^2/g$ to $1142\;m^2/g$ and the total pore volume increased from $0.14073\;cc{\cdot}g^{-1}$ to $0.9343\;cc{\cdot}g^{-1}$. Also, the C=O functional group characterized by aldehydes, ketones, carboxylic acids and esters was enhanced during the activation process. The EMI shielding effectiveness (SE) of raw N330 carbon blacks filled with PVA was about 1 dB and those of the activated carbon blacks increased to the values between 6 and 9 dB. The EMI SE of raw N330 carbon blacks filled with PVDF was about 7 dB and the EMI SE increased to the range from 11 to 15 dB by the activation.

A Development of High Power Activated Carbon Using the KOH Activation of Soft Carbon Series Cokes

  • Kim, Jung-Ae;Park, In-Soo;Seo, Ji-Hye;Lee, Jung-Joon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권2호
    • /
    • pp.81-86
    • /
    • 2014
  • The process parameter in optimized KOH alkali activation of soft carbon series coke material in high purity was set with DOE experiments design. The activated carbon was produced by performing the activation process based on the set process parameters. The specific surface area was measured and pore size was analyzed by $N_2$ absorption method for the produced activated carbon. The surface functional group was analyzed by Boehm method and metal impurities were analyzed by XRF method. The specific surface area was increased over 2,000 $m^2/g$ as the mixing ratio of activation agent increased. The micro pores in $5{\sim}15{\AA}$ and surface functional group under 0.4 meq/g were obtained. The contents of the metal impurity in activated carbon which is the factor for reducing the electrochemical characteristics was reduced less than 100 ppm through the cleansing process optimization. The electrochemical characteristics of activated carbon in 38.5 F/g and 26.6 F/cc were checked through the impedance measuring with cyclic voltammetry scan rate in 50~300 mV/s and frequency in 10 mHz ~100 kHz. The activated carbon was made in the optimized activation process conditions of activation time in 40 minutes, mixing ratio of activation agent in 4.5 : 1.0 and heat treatment temperature over $650^{\circ}C$.

ErCo2 Laves 화합물에서의 수소유기 비정질화에 관한 속도론적 연구 (A Kinetic Study on the Hydrogen-induced Amorphization in ErCo2 Laves Compound)

  • 용윤중;이재영
    • 한국수소및신에너지학회논문집
    • /
    • 제4권1호
    • /
    • pp.11-19
    • /
    • 1993
  • The kinetic studies of the hydrogen induced amorphization in $ErCo_2$ Laves phase is observed by the internal standard method using X-ray diffraction intensities. The activation energy and rate constant exponent for the amorphization in $ErCo_2$ are found to be 26 kcal/mole and 0.78, respectively. From these results, it is believed that the mechanism of the hydrogen induced amorphization in $ErCo_2$ is related to the motion of Co atoms. Though there are many similar physical properties between $ErCo_2$ and $ErNi_2$, the activation energy for the amorphizatin in $ErCo_2$ is larger than that in $ErNi_2$ and the amorphization rate in $ErCo_2$ is slower. It is suggested that these differences of activation energy for the hydrogen induced amorphization and the amorphization rate between $ErCo_2$ and $ErNi_2$ is due to the occurence of structural change on forming crystalline hydride.

  • PDF