DOI QR코드

DOI QR Code

Magnetic Interaction Effect on Activation Volume and Area of CoPt Magnetic Films

자성막 CoPt의 자기상호작용이 활성화 부피와 면적에 미치는 영향

  • Kim, Hyeon Soo (Department of Physics and Research Institute of Natural Science, Gyeongsang National University) ;
  • Jeong, Soon Young (Department of Physics and Research Institute of Natural Science, Gyeongsang National University) ;
  • Suh, Su Jeong (School of Advanced Materials and Engineering, Sungkyunkwan University)
  • 김현수 (경상대학교 자연과학대학 물리학과 및 기초과학 연구소) ;
  • 정순영 (경상대학교 자연과학대학 물리학과 및 기초과학 연구소) ;
  • 서수정 (성균관대학교 공과대학 신소재공학부)
  • Received : 2013.11.11
  • Accepted : 2013.12.03
  • Published : 2013.12.31

Abstract

The magnetic interaction effect on the magnetic activation volume and area of electrodeposited CoPt magnetic films was investigated. The dipolar interaction was predominant interaction mechanism for all samples. And the interaction strength was increased with decreasing current density and increased with increasing sample thickness. Although the activation volumes of the samples fabricated at low current density were larger than those of the high current density samples, the sample thickness seemed to have little influence on the variation of activation volume. But it was found that the activation area was apparently affected by the magnetic interaction strength as well as the current density.

수직 자기기록 매체로 알려진 CoPt 자성막을 전기도금법으로 제작하여 자기상호작용이 활성화 부피와 면적에 미치는 영향을 조사하였다. 모든 시료의 상호작용 기구는 쌍극자 상호작용이었으며, 낮은 전류밀도에서 제작한 시료일수록 두께가 두꺼울수록 상호작용 세기가 증가하였다. 한편 활성화 부피는 낮은 전류밀도에서 제작한 시료가 더 컸으나 두께에 따른 증감현상은 뚜렷하지 않았다. 그러나 활성화 면적은 상호작용의 세기가 강할수록 전류밀도가 낮을수록 감소하는 경향을 보였다.

Keywords

References

  1. G. Zangari, P. Bucher, N. Lecis, P.L. Cavallotti, L. Callegaro, and E. Puppin, J. Magn. Magn. Mater. 157/158, 256 (1996). https://doi.org/10.1016/0304-8853(95)01099-8
  2. G. Pattanaik, G. Zangari, and J. Weston, Appl. Phys. Lett., 89, 112506 (2006). https://doi.org/10.1063/1.2339070
  3. S. Franz, M. Bestetti, and P.L. Cavallotti, J. Magn. Magn. Mater. 316, e173 (2007). https://doi.org/10.1016/j.jmmm.2007.02.071
  4. K. O'Grady, T. Thomson, S.J. Greaves, and G. Bayreuther, J. Appl. Phys. 75, 6849 (1994). https://doi.org/10.1063/1.356805
  5. M.L. Yan, Y. Liu, S.H. Liou, and D.J. Sellmyer, IEEE Trans. Magn. 37, 1671 (2001). https://doi.org/10.1109/20.950933
  6. H.S. Kim, J.D. Lee, S.Y. Jeong, C.H. Lee, and S.J. Suh, J. Kor. Mag. Soc. 21, 151 (2011). https://doi.org/10.4283/JKMS.2011.21.5.151
  7. H.S. Kim, S.Y. Jeong, C.H. Lee, and S.J. Suh, J. Kor. Mag. Soc. 21, 193 (2011). https://doi.org/10.4283/JKMS.2011.21.6.193
  8. G. Pattanaik, G. Zangari, and J. Weston, Appl. Phys. Lett. 89, 112506 (2006). https://doi.org/10.1063/1.2339070
  9. M. Ghidini, G. Zangari, I.L. Prejbeanu, G. Pattanaik, L.D. Buda-Prejbeanu, G. Asti, C. Pernechele, and M. Solzi, J. Appl. Phys. 100, 103911 (2006). https://doi.org/10.1063/1.2357869
  10. H.S. Kim, S.Y. Jeong, and S.J. Suh, to be published in J. Magnetics 18 (2013).
  11. R. Street and J.C. Woolley, Proc. Phys. Soc., Sect. A 62, 562 (1949). https://doi.org/10.1088/0370-1298/62/9/303
  12. E.P. Wohlfarth, J. Phys. F14, 155 (1984).
  13. P.E. Kelly, K. O'Grady, P.I. Mayo, and R.W. Chantrell, IEEE Trans. Magn. 25, 3881 (1989). https://doi.org/10.1109/20.42466
  14. M. Ghidini, A. Lodi-Rizzini, C. Pernechele, M. Solzi, R. Pellicelli, G. Zangari, and P. Vavassori, J. Magn. Magn. Mater. 322, 1576 (2010). https://doi.org/10.1016/j.jmmm.2009.09.011
  15. I. Zana and G. Zangari, J. Magn. Magn. Mater. 272-276, 1698 (2004). https://doi.org/10.1016/j.jmmm.2003.12.262
  16. I. Zana, G. Zangari, and M. Shamsuzzoha, J. Magn. Magn. Mater. 292, 266 (2005). https://doi.org/10.1016/j.jmmm.2004.11.141
  17. G. Lauhoff and T. Suzuki, J. Appl. Phys. 87, 5702 (2000). https://doi.org/10.1063/1.372495