• Title/Summary/Keyword: Co-activation

Search Result 1,445, Processing Time 0.036 seconds

Fabrication of Metal-biochar Composite through CO2 Assisted Co-pyrolysis of Chlorella and Red Mud and Its Application for Persulfate Activation (녹조류와 적니의 이산화탄소환경 공동열분해를 통한 탄소-철 복합체 생성 및 과황산염 활성화를 통한 수중 염료 제거)

  • Jang, Hee-Jin;Kwon, Gihoon;Yoon, Kwangsuk;Song, Hocheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • The common algae and industrial waste, chlorella and red mud, were co-pyrolyzed in carbon dioxide condition to fabricate iron-biochar composite. In order to investigate the direct effect of chlorella and red mud in the syngas generation and the property of biochar, experiments were performed using mixture samples of chlorella and red mud. The evolution of flammable gasses (H2, CH4, CO) was monitored during pyrolysis. The produced biochar composite was employed as a catalyst for persulfate activation for methylene blue removal. BET analysis indicated that the iron-biochar composite mainly possessed meso- and macropores. The XRD analysis revealed that hematite (Fe2O3) contained in red mud was transformed to Fe3O4 during co-pyrolysis. The composite effectively activated persulfate and removed methylene blue. Among the composite samples, the composite fabricated from the mixture composed of 1:2 chlorella:red mud showed the best performance in syngas generation and methylene blue removal.

Surface and Adsorption Properties of Activated Carbon Fabric Prepared from Cellulosic Polymer: Mixed Activation Method

  • Bhati, Surendra;Mahur, J.S.;Dixit, Savita;Choubey, O.N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.569-573
    • /
    • 2013
  • In this study, activated carbon fabric was prepared from a cellulose-based polymer (viscose rayon) via a combination of physical and chemical activation (mixed activation) processes by means of $CO_2$ as a gasifying agent and surface and adsorption properties were evaluated. Experiments were performed to investigate the consequence of activation temperature (750, 800, 850 and $925^{\circ}C$), activation time (15, 30, 45 and 60 minutes) and $CO_2$ flow rate (100, 200, 300 and 400 mL/min) on the surface and adsorption properties of ACF. The nitrogen adsorption isotherm at 77 K was measured and used for the determination of surface area, total pore volume, micropore volume, mesopore volume and pore size distribution using BET, t-plot, DR, BJH and DFT methods, respectively. It was observed that BET surface area and TPV increase with rising activation temperature and time due to the formation of new pores and the alteration of micropores into mesopores. It was also found that activation temperature dominantly affects the surface properties of ACF. The adsorption of iodine and $CCl_4$ onto ACF was investigated and both were found to correlate with surface area.

Mechanisms for Aquation of trans-$[CoETECl_2]^+\;and\;cis-{\beta}-[CoTETCl_2]^+\;and\;Isomerization\;of\;trans-[CoETEClOH_2]_2^+$ (trans-[CoETECl_2]+와 cis-${\beta}$-[CoTETCl_2]+ 착이온의 수화반응 및 $trans-[CoETEClOH_2]_2^+$ 착이온의 이성질화반응의 메카니즘)

  • Jeong, Jong Jae;Baek, Seong O
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.117-122
    • /
    • 1990
  • The rate constants for the aquation of $trans-[CoETECl_2]^+ \;and \;cis-{\beta}-[CoTETCl_2]^+$ and the isomerization of $trans-[CoETEClOH_2]^{2+}$ were measured by spectrophotometric method under various temperature and pressure conditions. For the aquations of $trans-[CoETECl_2]^+ \;and\; cis-{\beta}-[CoTETCl_2]^+$, the activation entropies are 4.0 eu and 5.3 eu respectively and the activation volumes are $-5.8 cm^3mol-1\; and\; -6.6 cm^3mol^{-1}$ at 40$^{\circ}C$, respectively. From these data the dissociative mechanism involving trigonal bipyramid-type intermediate is proposed for the acquation reaction. For the isomerization of $trans-[CoETEClOH_2]^{2+}\; to\; cis-{\beta}-[CoETEClOH_2]^{2+}$ the activation entropy is 9.5 eu and the activation volume is $8.4 cm^3mol^{-1}(30^{\circ}C$. The mechanism of isomerization may be considered as the dissociative mechanism with $H_2O$-dissociation.

  • PDF

In Vitro Maturation of Porcine Oocytes in a Dry Incubator without $CO_2$ Gas Supplement

  • Park, Kwang-Wook
    • Reproductive and Developmental Biology
    • /
    • v.36 no.3
    • /
    • pp.141-145
    • /
    • 2012
  • The present study was conducted to develop a simple method for porcine oocyte maturation without $CO_2$ regulation. In experiment 1, we evaluated that the effect of $CO_2$ non-supplement on porcine oocyte maturation. Cumulusoocyte complexes (COCs) were collected from 2~6 mm follicles and divided into three groups (Control, tube-$CO_2$, and tube-non-$CO_2$). For control, COCs were cultured in 4-well multidish in a $CO_2$ incubator. For tube-$CO_2$, COCs were cultured in a round-bottom tube in a $CO_2$ incubator, and for tube-non-$CO_2$, COCs were cultured in a round-bottom tube sealed tightly without $CO_2$ supplement in a dry incubator. The proportion of oocytes reached to metaphase II (M-II) was not significantly different among three groups (87.9% to 91.4%). In experiment 2, we evaluated the effect of $CO_2$ non-supplement during oocyte maturation on development of embryos. Oocytes with a polar body were divided into two groups (Control and tube-non-$CO_2$) and applied 1.1 kV/cm or 1.2 kV/cm voltages for parthenogenetic activation. After activation, embryos were cultured for 6 days and examined the development. The proportion of embryos cleaved was not significantly different among treatment (86.3% to 91.5%). The proportion of embryo reached to blastocyst stage was not significantly different among treatment (13.9% to 25.2%). The cell number of blastocysts was not significantly different among treatment (29.0 to 32.4). In conclusion, oocytes cultured in a dry incubator without $CO_2$ supplement have enough competence to development after parthenogenetic activation. These results would be useful for transporting oocytes or embryos a long distance.

Fabrication and Characterization of Nano-sized Fe-50 wt% Co Powder from Fe- and Co-nitrate (Fe- 및 Co-질산염을 이용한 Fe-50 wt% Co 나노분말의 합성 및 특성 평가)

  • Riu, Doh-Hyung;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.508-512
    • /
    • 2010
  • The optimum route to fabricate nano-sized Fe-50 wt% Co and hydrogen-reduction behavior of calcined Fe-/Conitrate was investigated. The powder mixture of metal oxides was prepared by solution mixing and calcination of Fe-/Co-nitrate. A DTA-TG and microstructural analysis revealed that the nitrates mixture by the calcination at $300^{\circ}C$ for 2 h was changed to Fe-oxide/$Co_3O_4$ composite powders with an average particle size of 100 nm. The reduction behavior of the calcined powders was analyzed by DTA-TG in a hydrogen atmosphere. The composite powders of Fe-oxide and Co3O4 changed to a Fe-Co phase with an average particle size of 40 nm in the temperature range of $260-420^{\circ}C$. In the TG analysis, a two-step reduction process relating to the presence of Fe3O4 and a CoO phase as the intermediate phase was observed. The hydrogen-reduction kinetics of the Fe-oxide/Co3O4 composite powders was evaluated by the amount of peak shift with heating rates in TG. The activation energies for the reduction, estimated by the slope of the Kissinger plot, were 96 kJ/mol in the peak temperature range of $231-297^{\circ}C$ and 83 kJ/mol of $290-390^{\circ}C$, respectively. The reported activation energy of 70.4-94.4 kJ/mol for the reduction of Fe- and Co-oxides is in reasonable agreement with the measured value in this study.

Combustion Characteristics and Activation Energy From Thermogravimetric Analysis of Bituminous and Anthracite Coal (TGA에 의한 유.무연탄의 연소특성과 활성화에너지 비교)

  • 김성철;최병선;이현동;홍성선
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.170-175
    • /
    • 1996
  • This study is to determined the activation energy from TGA experimental data for the bituminous and anthracite coals of three kinds which are being used in the domestic coal-fired power plants. TGA experimental data indicate that the weight loss temperature of bituminous coal is 200$^{\circ}C$ higher than that of anthracite coal. Activation energy of bituminous coal is in the range of 14∼20 Kcal/mole compared with 37∼55 Kcal/mole of anthracite coal. A reduction of particle size of coals results in the decrease of activation energy and activation energy has a good correlation with the weight loss percent of coal in the TGA experiment. Addition of CaCO$_3$ on anthracite coal caused to decrease the activation energy of 1∼23 Kcal/mole while activation energy of bituminous coal do not change significantly.

  • PDF

MAGNETIC FIELD DEPENDENCE OF MAGNETIZATION REVERSAL BEHAVIOR IN Co/Pt MULTILAYERS.

  • Cho, Yoon-Chul;Choe, Sug-Bong;Shin, Sung-Chul
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.279-286
    • /
    • 2000
  • Magnetic field dependence of magnetization reversal in Co/Pt multilayers has been quantitatively investigated. Serial samples of Co/Pt multilayers have been prepared by dc-magnetron sputtering under various Ar pressure. Magnetization reversal was monitored by magnetization viscosity measurement and direct domain observation using a magneto-optical microscope system, and the wall-motion speed and the nucleation rate R were determined using a domain reversal model based on time-resolved domain reversal patterns. Both and R were found to be exponentially dependent on the reversing applied field. From the exponential dependencies, the activation volumes of the wall motion and nucleation could be determined based on a thermally activated relaxation model, and the wall-motion activation volume was revealed to be slightly larger than the nucleation activation volume.

  • PDF

Optimization of Washing Process for the Recycling of Potassium in the Manufacturing of Activated Carbon (활성탄 제조공정의 칼륨 재이용을 위한 세척공정 최적화)

  • Lee, Gi-bbum;Jung, Hee-Suk;Hong, Bum-ui;Kim, Seokhwi;Choi, Suk-soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.63-71
    • /
    • 2017
  • In this study, washing parameters such as washing time, agitation velocity, and cycles were optimized for high surface area of the activated carbon (AC) by KOH activation. Even though AC with high surface area showed at higher washing efficiency, over 90% on washing efficiency was regulated by the intra-particle diffusion due to high tortuosity of the pore structures on AC. In addition, we can obtain $K_2CO_3$ through the evaporation from the wastewater and use it for chemical activation of AC. The AC with $K_2CO_3$ activation has specific surface area values of $2,219m^2/g$ equally that of KOH activation. Considering that $K_2CO_3$ is an effective alternative as a KOH, our results demonstrated that the process by recycling wastewater on AC production could be applicable for near-zero wastes.

The Effect of CoP(Community of Practice) Influence Factors on Satisfaction and Learning Culture Activation in R&D Groups: Based on Comparison Analysis by Group Maturity (연구개발 직군의 실행공동체 영향요인이 만족도 및 학습문화 활성화에 미치는 영향:집단 성숙도에 따른 비교 분석)

  • Oh, Sungho;Kim, Bo-Young
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.12
    • /
    • pp.407-420
    • /
    • 2015
  • This study analyzes the effect of CoP(Community of Practice) influence factors on satisfaction and learning culture activation in R&D groups. Research model and hypothesis is designed the relationship the effect factors for CoP which are consist of personal factor, interacting factor, support factor and environmental factor and satisfaction and the learning culture activation focused on comparing between maturity and immaturity CoP member group. It conducted an analysis based on 371 survey responses significantly. Hence, interacting, supporting and personal factor have a significant positive effect on satisfaction but environmental factor was negative effect to it. CoP Satisfaction has a positive effect on the learning culture activation. However average between two groups has not a statistically significant difference in all of the factors. At the result, interacting between members is the most important factor to the successful CoP development of R&D groups.

Kinetic Studies on Physical and Chemical Activation of Phenolic Resin Chars

  • Agarwal, Damyanti;Lal, Darshan;Tripathi, V.S.;Mathur, G.N.
    • Carbon letters
    • /
    • v.4 no.3
    • /
    • pp.126-132
    • /
    • 2003
  • Granular Activated Carbon (GAC) has been proven to be an excellent material for many industrial applications. A systematic study has been carried out of the kinetics of physical as well as chemical activation of phenolic resin chars. Physical activation was carried out using $CO_2$ and chemical activation using KOH as activating agent. There are number of factors which influence the rate of activation. The activation temperature and residence time at HTT varied in the range $550{\sim}1000^{\circ}C$ and $\frac{1}{2}{\sim}8$ hrs respectively. Kinetic studies show that the rate of chemical activation is 10 times faster than physical activation even at much lower temperature. Above study show that the chemical activation process is suitable to prepare granular activated carbon with very high surface area i.e.$ 2895\;m^2/g$ in short duration of time i.e. 1 to 2 hrs at lower temperature i.e. $750^{\circ}C$ from phenolic resins.

  • PDF