• Title/Summary/Keyword: Co-Zr alloy

Search Result 84, Processing Time 0.022 seconds

Study of Coercivity Origin in Mechanically Alloyed Co-Zr System

  • Jeong, I.C.;Kwon, H.W.
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.45-48
    • /
    • 2007
  • [ $Co_{100-X}Zr_X$ ] (x=10-40) alloys were prepared by using a mechanical alloying technique. Phase constitution of the crystallised material depended on the annealing temperature. The $Co_{82}Zr_{18}$ alloy crystallised at lower temperature around $550^{\circ}C$ consisted of $Co_{23}Zr_6$, $Co_5Zr$ and fcc-Co phases, while the alloy crystallised at higher temperature around $800^{\circ}C$ consisted of $Co_{23}Zr_6$ and fcc-Co phases. Phase constitution of the crystallised material also depended on the chemical composition of the alloy. The material with lower Zr content less than 10 at% Zr consisted of $Co_{23}Zr_6$ and fcc-Co, and the material with higher Zr-content over 30 at% consisted of $Co_2Zr$ phase. The material containing 15-20 at% Zr consisted of $Co_{23}Zr_6$, $Co_5Zr$ and fcc-Co. Only the material containing $Co_5Zr$ phase exhibited substantial coercivity, and it was confirmed that coercivity in the mechanically alloyed Co-Zr alloy was originated from the $Co_5Zr$ phase.

Magnetic and Structural Properties of CoFeZr Alloy Films and Magnetoresistive Properties of Spin Valves Incorporating Amorphous CoFeZr Layer (CoFeZr 합금박막의 미세구조, 자기적 특성 및 비정질 CoFeZr 합금박막을 사용한 스핀밸브의 자기저항 특성에 관한 연구)

  • Ahn, Whang-Gi;Park, Dae-Won;Kim, Ki-Su;Lee, Seong-Rae
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.227-231
    • /
    • 2008
  • Magnetic and structural properties of CoFeZr alloy films as a function of Zr concentration and magnetoresistive properties of spin valves incorporated with amorphous CoFeZr alloy films have been studied. Magnetization and coercivity of CoFeZr alloy films decreased as the Zr content increased. A single amorphous CoFeZr phase was formed when the Zr content is about above 18 at%. Magnetoresistance ratio and exchange coupling field of spin valves with amorphous CoFeZr were reduced slightly as compared with spin valves with CoFe because the resistance of amophous CoFeZr is higher than that of crystalline CoFe. However, the ${\Delta}{\rho}$ of spin valves with amorphous CoFeZr was improved due to reduction of current shunting.

A Study on the Reliability of Ru-Zr Metal Gate with Thin Gate Oxide (박막 게이트 산화막에 대한 Ru-Zr 금속 게이트의 신뢰성에 관한 연구)

  • 이충근;서현상;홍신남
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.208-212
    • /
    • 2004
  • In this paper, the characteristics of co-sputtered Ru-Zr metal alloy as gate electrode of MOS capacitors have been investigated. The atomic compositions of alloy were varied by using the combinations of relative sputtering power of Ru and .Zr. C-V and I-Vcharacteristics of MOS capacitors were measured to find the effective oxide thickness and work function. The alloy made of about 50% of Ru and 50% of Zr exhibited an adequate work function for nMOS. C-V and I-V measurements after 600 and $700^{\circ}C$ rapid thermal annealing were performed to prove the thermal and chemical stability of the Ru-Zr alloy film. Negligible changes in the accumulated capacitance and work function before and after annealing were observed. Sheet resistance of Ru-Zr alloy was lower than that of poly-silicon. It can be concluded that the Ru-Zr alloy can be a possible substitute for the poly-silicon used as a gate of nMOS.

Electrochemical properties of $AB_5$-type Hydrogen alloys upon addition of Zr, Ti and V ($AB_5$계 수소저장합금의 Zr, Ti 및 V 첨가에 따른 전기화학적특성)

  • Kim, D.H.;Cho, S.W.;Jung, S.R.;Park, C.N.;Choi, J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • There are two types of metal hydride electrodes as a negative electrode in a Ni-MH battery, $AB_2$ Zr-based Laves phases and $AB_5$ LM(La-rich mischmetal)-based alloys. The $AB_5$ alloy electrodes have characteristic properties such as a large discharge capacity per volume, easiness in activation, long cycle life and a low cost of alloy. However they have a relatively small discharge capacity per weight. The $AB_2$alloy electrodes have a much higher discharge capacity per weight than $AB_5$ alloy electrodes, however they have some disadvantages of poor activation behavior and cycle life. Therefore, in order to improve the discharge capacity of the $AB_5$ alloy electrode the Zr, Ti and V which are the alloying elements of the $AB_2$ alloys were added to the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy which was chosen as a $AB_5$ alloy with a high capacity. The addition of Zr, Ti and V to $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy improved the activation to be completed in two cycles. The discharge capacities of Zr 0.02, Ti 0.02 and V 0.1 alloys in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) were respectively 346, 348 and 366 mAh/g alloy. The alloy electrodes, Zr 0.02, Ti 0.05 and V 0.1 in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V), have shown good cycle property after 200 cycles. The rate capability of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloy electrodes were very good until 0.6 C rate and the alloys, Zr 0.02, Ti 0.05 and V 0.1, have shown the best result as 92 % at 2.4 C rate. The charge retention property of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloys was not good and the alloys with M content from 0.02 to 0.05 showed better charge retention properties.

Microstructure and Corrosion Behavior of Zr Alloys with Manufacturing Process (핵연료피복관용 Zr 합금의 제조공정에 따른 미세조직 및 부식거동)

  • Kim, H.G.;Choi, B.K.;Kim, K.T.;Kim, S.D.;Park, C.H.;Jeong, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.5
    • /
    • pp.288-296
    • /
    • 2005
  • The corrosion behaviors of Zr-based alloys were very sensitive to their microstructures which were determined by manufacturing process. The specimens of Zr-based alloy named as HANA-4 for nuclear fuel cladding were investigated in order to get the optimized manufacturing process such as the intermediate annealing temperature and cold working steps after the ${\beta}$ quenching. From the microstructural analysis, cold worked microstructure of the samples was changed to the recrystallized microstructure by performed process. The corrosion behaviors of HANA-4 alloy were affected by the different manufacturing process. The ${\beta}$-Zr phase was formed in the matrix and the Nb concentration in the ${\beta}$-Zr phase was increased as progressing the manufacturing process. So, it was found that the corrosion rate of HANA-4 alloy was affected by the Nb concentration in the matrix.

The effect of Zirconium Nitride coating on shear bond strength with denture base resin in Co-Cr alloy and titanium alloy (질화 지르코늄 코팅이 코발트 크롬 합금과 타이타늄 합금에서 의치상 레진과의 전단결합강도에 미치는 영향)

  • Park, Chan;Lee, Kyoung-Hun;Lim, Hyun-Pil
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.194-201
    • /
    • 2016
  • Purpose: The purpose of this study was to evaluate of Zirconium Nitride (ZrN) coating on shear bond strength with denture base resin in Co-Cr and Ti-6Al-4V alloy. Materials and Methods: Co-Cr and Ti-6Al-4V alloy disks (10 mm in diameter, 2.5 mm in thickness; each other: n = 14) were prepared and divided with 2 groups each other by ZrN coating. After primer was applied to disks surface, denture base resin with diameter 6 mm, height 5 mm was bonded on metal disk surface. After surface roughness was measured by Profiler, shear bond strength was determined with Universal testing machine and analyzed with two-way ANOVA. The specimen surfaces and failure mode were examined using a scanning electron microscope. Results: ZrN coated groups showed significantly higher rough surface than non-coated groups (P < 0.05). Irrespective of alloy materials, shear bond strength of ZrN coated groups were lower than non-coated groups (P < 0.001). The scanning electron microscope (SEM) of ZrN coated groups showed mixed and adhesive fractures. Conclusion: ZrN coating weakened bonding strength between denture base resin and Co-Cr, Ti-6Al-4V alloy.

Compositional Effect on the Magnetic Properties of Nd-Fe-Co-B and Nd-Fe-Co-Zr-B Bonded Magent (합금조성에 따른 Nd-Fe-Co-B 및 Nd-Fe-Co-Zr-B계 본드자석의 자기특성)

  • 최승덕;이우영;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.60-68
    • /
    • 1991
  • In compacting the melt-spun $Nd_{14}Fe_{76}Co_{4}B_{6}$ and $Nd_{10.5}Fe_{79}Co_{2}Zr_{15}B_{7}$ magnetic powders. the difference in composition induces a different behavior of closed packing rate as a function of aspect ratio of the powders. The $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ alloy having a low Co/Fe ratio (low density) shows the better green density to have an enhanced closed packing rate. An empirical power equation relating the green density with the compacting pressure was obtained such as ${\phi}(g/cm^{2})=5.2~5.6{\times}P^{0.045~0.065}(ton/cm^{2})$. The $Nd_{14}Fe_{76}Co_{4}B_{6}$ alloy having a high Nd/Fe ratio possesses much finer grain size(50~60 nm) than that of $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ alloy and shows the higher coercivity($iH_{c}=14~15kOe$). The higher Nd/Fe ratio in the melt-spun Nd-Fe-Co-B alloy, where the domain wall pinning mechanism was found to be predominant, assists the formation of Nd-rich grain boundary phase acting as a pinning site. The grain boundary ranges over $12~16\;{\AA}$ thick in the Nd-Fe-Co-B alloy while it ranges over $8~12\;{\AA}$ thick in the Nd-Fe-Co-Zr-B alloy.

  • PDF

The effect of substitution elements(Co, Cr, Fe) on the properties of Zr-based hydrogen storage alloy electrode for Ni-MH secondary battery (Ni-MH 2차 전지용 Zr계 수소저장합금전극의 특성에 미치는 치환원소(Co, Cr, Fe)의 영향)

  • Choi, Seung-Jun;Jung, So-Yi;Seo, Chan-Yeol;Choi, Jeon;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.3
    • /
    • pp.185-189
    • /
    • 1999
  • Effects of alloy modification with the $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.4}$ alloy for an electrode use have been investigated. For the alloy composition, a part of Mn was substituted by Co, Cr and Fe. The experimental results showed that Co accelerated activation of alloy, and Fe and Cr improved the discharge capacity. These results agree with P-C-T curves of each alloy. But substituting Fe for Mn showed the decrease of the discharge capacity when discharged at high rate (60mA, about 1C rate). Considering both the discharge capacity and the high rate discharge property, $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.3}Cr_{0.1}$ alloy was found to be the best alloy among the alloys subjected to the test.

  • PDF

Properties of Ru1Zr1 Alloy Gate Electrode for NMOS Devices (NMOS 소자에 대한 Ru1Zr1 합금 게이트 전극의 특성)

  • Lee, Chung-Keun;Kang, Young-Sub;Hong, Shin-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.602-607
    • /
    • 2004
  • This paper describes the characteristics of Ru-Zr alloy gate electrodes deposited by co-sputtering. The various atomic composition was made possible by controlling sputtering power of Ru and Zr. Thermal stability was examined through 600 and 700 $^{\circ}C$ RTA annealing. Variation of oxide thickness and X-ray diffraction(XRD) pattern after annealing were employed to determine the reaction at interface. Low and relatively stable sheet resistances were observed for Ru-Zr alloy after annealing. Electrical properties of alloy film were measured from MOS capacitor and specific atomic composition of Zr and Ru was found to yield compatible work function for nMOS. Ru-Zr alloy was stable up to $700^{\circ}C$ while maintaining appropriate work function and oxide thickness.

The comparative study on the marginal fit of a metal-ceramic alloy, IPS - Empress and a zirconia($ZrO_2$) ceramic used for fabrication of dental restoration (치과보철물 제작에 사용되는 금속-도재용 합금, IPS - Empress, 지르코니아($ZrO_2$) 세라믹의 변연적합도에 관한 비교평가)

  • Kim, Chul-Soo
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • Purpose: As the demand and importance of aesthetic aspects in dental treatment become higher, much attention is paid to materials used for dental prostheses. Thus, the marginal fidelity of most-commonly used alloy, IPS - Empress and ZrO2 ceramic is compared. Methods: The alloy core made by casting, IPS - Empress core made by pressing and ZrO2 ceramic core made by CAD/CAM are used to make 10 samples respectively. For each core, three points were measures and the optical microscope (Axio Imager.Alm,Zeiss co., Oberkochen, Germany) was used to observe the cores with a magnification of 100. Results: As for alloy, IPS - Empress and ZrO2 ceramic, the average and deviation of their marginal distance are $29.91\;{\pm}11.93{\mu}m$ for alloy, $33.45\;{\pm}8.61{\mu}m$ for IPS - Empress, and $31.55\;{\pm}9.85{\mu}m$ for ZrO2. The one-way ANOVA test was conducted to compare them. However, there was no statistically significant difference among them. Conclusion: The study on marginal fidelity of alloy, IPS - Empress, and ZrO2 ceramic shows they have no marginal fidelity problem clinically. Therefore, if a system is selected based on the patient's condition or treatment method, there will be no problem.