• 제목/요약/키워드: Co-Occurrence Matrix

검색결과 166건 처리시간 0.037초

영상 품질 기반의 지문 데이터베이스의 난이도 정량화 (Measuring Level of Difficulty of Fingerprint Database based on Sample Quality)

  • 류지은;장지현;김학일
    • 정보보호학회논문지
    • /
    • 제18권5호
    • /
    • pp.59-69
    • /
    • 2008
  • 본 연구의 목적은 지문인식 평가용 데이터베이스의 난이도(Level of Difficulty)를 지문영상 품질 평가를 통하여 정량화 하는 것이다. 본 논문에서는 지문 데이터베이스의 난이도 정량화 방법으로 품질 분포도 분석 방법과 품질 차이 분석 방법을 제안한다. 품질 분포도 분석 방법은 지문 영상의 품진 등급별 빈도수를 기반으로 데이터베이스 전체의 난이도를 표현한 방법이고, 품질 차이 분석 방법은 데이터베이스를 구성하는 동일 지문의 영상들 간의 각 품질 차이별 빈도수를 동시발생 매트릭스(Co-occurrence Matrices)를 이용하여 난이도로 나타낸 방법이다. 두 방법론에 의한 실험 결과 지문영상 품질 기반의 데이터베이스의 난이도는 인식 성능과 상관관계를 가지며, 품질 분포도 기반의 난이도보다 품질 차이 기반의 난이도가 더 높은 상관관계를 보임을 확인할 수 있었다. 특히 MPQ(Matching Pairwise Qualities) 동시발생 매트릭스의 OQ(Opposite Qualities) Block 기반의 난이도 정량화 방법이 인식 성능과 가장 높은 상관관계를 나타내는 것을 알 수 있었다. 본 연구를 통해 지문영상 품질 기반의 지문 데이터베이스의 난이도를 정량화할 수 있었고, 난이도와 인식성능이 높은 상관관계를 가짐을 알 수 있다.

트리 구조를 이용한 냉연 표면흠 검사 알고리듬 개발에 관한 연구 (Development of surface defect inspection algorithms for cold mill strip using tree structure)

  • 김경민;정우용;이병진;류경;박귀태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.365-370
    • /
    • 1997
  • In this paper we suggest a development of surface defect inspection algorithms for cold mill strip using tree structure. The defects which exist in a surface of cold mill strip have a scattering or singular distribution. This paper consists of preprocessing, feature extraction and defect classification. By preprocessing, the binarized defect image is achieved. In this procedure, Top-hit transform, adaptive thresholding, thinning and noise rejection are used. Especially, Top-hit transform using local min/max operation diminishes the effect of bad lighting. In feature extraction, geometric, moment, co-occurrence matrix, histogram-ratio features are calculated. The histogram-ratio feature is taken from the gray-level image. For the defect classification, we suggest a tree structure of which nodes are multilayer neural network clasifiers. The proposed algorithm reduced error rate comparing to one stage structure.

  • PDF

연속 항공영상에서의 Image Registration (Image Registration of Aerial Image Sequences)

  • 강민석;김준식;박래홍;이쾌희
    • 전자공학회논문지B
    • /
    • 제29B권4호
    • /
    • pp.48-57
    • /
    • 1992
  • This paper addresses the estimation of the shift vector from aerial image sequences. The conventional feature-based and area-based matching methods are simulated for determining the suitable image registration scheme. Computer simulations show that the feature-based matching schemes based on the co-occurrence matrix, autoregressive model, and edge information do not give a reliable matching for aerial image sequences which do not have a suitable statistical model or significant features. In area-based matching methods we try various similarity functions for a matching measure and discuss the factors determining the matching accuracy. To reduce the estimation error of the shift vector we propose the reference window selection scheme. We also discuss the performance of the proposed algorithm based on the simulation results.

  • PDF

신경회로망을 이용한 가공면 영상의 거칠기 분류 (The Classification of Roughness fir Machined Surface Image using Neural Network)

  • 사승윤
    • 한국생산제조학회지
    • /
    • 제9권2호
    • /
    • pp.144-150
    • /
    • 2000
  • Surface roughness is one of the most important parameters to estimate quality of products. As this reason so many studies were car-ried out through various attempts that were contact or non-contact using computer vision. Even through these efforts there were few good results in this research., however texture analysis making a important role to solve these problems in various fields including universe aviation living thing and fibers. In this study feature value of co-occurrence matrix was calculated by statistic method and roughness value of worked surface was classified, of it. Experiment was carried out using input vector of neural network with characteristic value of texture calculated from worked surface image. It's found that recognition rate of 74% was obtained when adapting texture features. In order to enhance recogni-tion rate combination type in characteristics value of texture was changed into input vector. As a result high recognition rate of 92.6% was obtained through these processes.

  • PDF

질감 특징의 영상화 기법에 관한 연구 (The Study about Imaging Technique of Texture Features)

  • 이병일;최현주;최흥국
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 춘계학술발표논문집
    • /
    • pp.169-172
    • /
    • 2001
  • 영상의 특성 파악을 위해서 질감 특징이 많이 사용되고 있다 Co-occurrence matrix를 이용한 질감은 영상의 변화형태에 대한 수치자료로 다양한 함수들을 가지고 있으며, 영상의 특성에 따라서 그 함수들을 활용하여 영상의 분할과 분류에 사용하고 있다. 본 논문에서는 질감 특징을 시각화하기 위한 방법으로 GLCM의 로컬값을 새로운 픽셀값으로 하는 영상화 기법에 대해 논하였다. 실험을 통해 질감특징 중 대조적인 관계와 동일성을 가진 질감에 대한 영상을 얻을 수 있었으며, 영상 분석에 대한 시각적인 자료를 얻을 수 있었다. 질감특징은 각 항수별 특징값의 효율적인 사용을 위해 시각화되어질 필요성이 있으며 영상화되어진 질감특징영상을 이용하면 영상의 분석과 이해에 효과적인 접근이 가능하다.

  • PDF

고해상도 위성영상을 이용한 산화피해림의 특징추출 (Feature Extraction of Forest Fire by Using High Resolution Image)

  • 윤보열;김천
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 춘계학술대회 논문집
    • /
    • pp.275-278
    • /
    • 2006
  • 본 연구는 전정색(panchromatic) 고해상도 위성영상을 이용하여 산화피해림과 비산화림을 대상으로 수종별로 구분하여 조사하였다. 제안된 방법은 회색단계 공발생 행렬(Gray Level Co-occurrence Matrix, GLCM)을 통하여 생성된 질감 영상(textural images)과 웨이블릿 분해 영상(wavelet decomposition images)의 융합을 실시하여 질감 영상에서 추출될 수 있는 정보와 웨이블릿 분해를 통해 얻을 수 있는 정보를 획득하고자 하였다. 그 결과로 동일 수종을 형성하는 임반이나 산화피해 정도가 유사한 산림의 경우 영상의 밝기값의 분포가 일정한 범위 내에서 형성되어 수종 분류 및 산화피해 등급의 구분이 가능했으나, 영상 내 경계효과(edge effect) 현상은 일부 영상에서 나타났다.

  • PDF

임분 특성에 따른 고해상도 위성영상의 Texture 정보 분석 (Analysis of Texture Information of forest stand on High Resolution Satellite Imagery)

  • 김태근;이규성
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2003년도 공동 춘계학술대회 논문집
    • /
    • pp.145-150
    • /
    • 2003
  • 고해상도 위성영상을 이용한 산림의 분석은 기존의 중ㆍ저해상도 영상의 분석과 다른 접근이 필요하다. 본 연구는 임분 특성을 해석하는데 중요한 판독기준인 texture를 이용하여 영상 안에서 임상, 임목직경급, 수관울폐도 등에 따른 Texture 정보를 비교 분석하고자 한다. 울산 일부 산림지역을 대상으로 3개의 가시광선 밴드와 1개의 근적외선 밴드의 1m IKONOS 영상을 이용하여 Texture 정보를 추출하는데 일반적으로 사용되는 통계적인 방법 중에 하나인 GLCM(Gray-Level Co-occurrence matrix)을 통해 Texture 분석을 하였다. 또한 1996년도에 제작된 4차 임상도를 통해 추출된 산림 특성별 Texture 정보를 비교 검토하여 고해상도 위성영상을 활용하여 산림 특성을 해석하는데 최적의 Texture 정보를 제시하고자 하였다. 고해상도 영상에서 나타나는 임분의 특성별 질감정보는 임상, 직경, 임목밀도에 따라 다양하게 나타났다.

  • PDF

신경회로망을 이용한 냉연 표면흠 분류를 위한 계층적 분류기의 설계 (Design of Hierarchical Classifier for Classifying Defects of Cold Mill Strip using Neural Networks)

  • 김경민;류경;정우용;박귀태;박중조
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.499-505
    • /
    • 1998
  • In developing an automated surface inspect algorithm, we have designed a hierarchical classifier using neural network. The defects which exist on the surface of cold mill strip have a scattering or singular distribution. We have considered three major problems, that is preprocessing, feature extraction and defect classification. In preprocessing, Top-hit transform, adaptive thresholding, thinning and noise rejection are used Especially, Top-hit transform using local minimax operation diminishes the effect of bad lighting. In feature extraction, geometric, moment, co-occurrence matrix, and histogram ratio features are calculated. The histogram ratio feature is taken from the gray-level image. For defect classification, we suggest a hierarchical structure of which nodes are multilayer neural network classifiers. The proposed algorithm reduced error rate by comparing to one-stage structure.

  • PDF

GLCM과 육안판독을 이용한 도시경계 추출 (Extracting Urban Boundary Using Grey Level Co-Occurrence Matrix Method and Visual Interpretation)

  • 손홍규;김기홍;유복모;방수남
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2003년도 춘계학술발표회 논문집
    • /
    • pp.313-316
    • /
    • 2003
  • Growing urban areas modify patterns of local land use and land cover. Land use changes associated with an urban area can be extensive. One way to understand and document land use change and urbanization is to establish benchmark maps compiled from satellite imagery The use of satellite imagery for monitoring urban growth has been widely demonstrated. Multi-temporal LANSAT TM image data has created the potential for monitoring urban change and land cover identification. In this study, for extracting urban boundary GLCM method and visual interpretation were used in CORONA imagery and SPOT imagery.

  • PDF

텍스처 정보 기반의 PCA를 이용한 문서 영상의 분석 (Texture-based PCA for Analyzing Document Image)

  • 김보람;김욱현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.283-284
    • /
    • 2006
  • In this paper, we propose a novel segmentation and classification method using texture features for the document image. First, we extract the local entropy and then segment the document image to separate the background and the foreground using the Otsu's method. Finally, we classify the segmented regions into each component using PCA(principle component analysis) algorithm based on the texture features that are extracted from the co-occurrence matrix for the entropy image. The entropy-based segmentation is robust to not only noise and the change of light, but also skew and rotation. Texture features are not restricted from any form of the document image and have a superior discrimination for each component. In addition, PCA algorithm used for the classifier can classify the components more robustly than neural network.

  • PDF