• 제목/요약/키워드: Co-Occurrence

검색결과 1,062건 처리시간 0.028초

Reperfusion Arrhythmia에 관한 연구 III. 관상동맥 폐색시의 혈액동력학적인 변화와 RA발생과의 관계 (A Study on Reperfusion Arrhythmia III. Relationship to Hemodynamics Changes and Occurrence of Reperfusion Arrhythmia after Occlusion of Coronary Artery in Dogs)

  • 최인혁;정인성;최은경;김희은
    • 한국임상수의학회지
    • /
    • 제18권4호
    • /
    • pp.402-410
    • /
    • 2001
  • This study was performed to investigate the hemodynamic changes which occur after occlusion of coronary artery and relation to reperfusion arrhythmias(RA) which occur when occlusion materials were removed form coronary artery in dogs. The occlusion of coronary artery was designed by temporary ligation of left circumflex branch of coronary artery during 30 minutes in 16 dogs. During occlusion of coronary artery, cardiac output(CO), mean aortic pressure (mAP), aortic systolic pressure(ASP), aortic diastolic pressure(ADP). left ventricular systolic pressure(LVSP), left ventricular maximum dp/dt (LV max. dp/dt) and left ventricular end-diastolic pressure (LVEDP) were measured. The occurrence of RA were observed for 5 minute after reperfusion by explained of ligation. As a results, cardiac arrest occurred in 4 dogs during occlusion of coronary artery, and RA was not observed in 5 dogs while it was seen in 5 dogs when explained ligation(reperfusion) after 30 minutes, the rest 2 dogs occurred temporary tachycardia. In hemodynamics changes, LVSP decreased by 10.9% and LV max. dp/dt by 5.4 % in comparison to control value which not ligated coronary artery, and LVEDP increased by 73.3%. The CO/min and mAP also decreased by 10.7% and by 11.3% expectedly. In the relationship to occurrence RA and hemodynamics changes, the LVSP and LV max. dp/dt at the time of occlusion in the RA group decreased by 11.9% and 0.8% in comarison to the control value while the decrease was 7.7% and 10% in the non-RA group. But the LVEDP in creased by 109.1% in the RA group while the decreased was 44.6% in the non-RA group. Referring CO/min, the drop was 8.8% in the RA occurrence group and 12.9% in the non-occurence group. These parameters of LVEDP, LV max. dp/dt, and CO were significant difference(p<0.05). The mAP also decreased by 11.9 in the RA group and by 9.8% in the non-RA group, but these defference were not the significant difference.

  • PDF

이동 물체의 상호 발생 특징정보를 이용한 동영상에서의 이동물체 추적 (Moving Object Tracking Using Co-occurrence Features of Objects)

  • Kim, Seongdong;Seongah Chin;Moonwon Choo
    • 지능정보연구
    • /
    • 제8권2호
    • /
    • pp.1-13
    • /
    • 2002
  • 본 논문에서는 연속적으로 입력되는 칼라영상에서 물체의 이동에 의하여 형성된 동작영역을 확인하고, 영상의 시컨스(sequence)를 대상으로 움직이는 물체의 형태인 보행자 혹은 자동차들의 이동방향을 추적하는 시스템을 제안하였다. 카메라가 고정되어 있고 물체가 이동하는 상황에서 카메라시계에 진입하는 물체를 포착하여, 포착된 물체의 영역을 차 영상 분석을 통해 이진화하여 추출하고, 추출된 영역을 co-occurrence matrix의 RGB full 칼라의 특징 벡터를 추출하는 것을 제시하였다 추출되어지는 칼라 특징벡터를 분석하여 인접 프레임간의 이동물체 영역끼리의 대응관계를 조사함으로서, 이동물체를 추적한다. 군집화(clustering) 단계에서는 이전 단계에서 추출한 특징 벡터들 가운데 에너지, 엔트로피만을 가지고 인접 프레임간의 군집화를 조사하기 위하여 이동물체 영역들 간의 퍼지동적물체 정합 알고리즘을 적용시켰다. 인접 프레임간의 움직임 영역의 물체들에 대하여 멤버 쉽 함수를 근거로 중심 값을 계산하면, 동일 물체일 경우 중심 값 부근에서 군집이 형성되며, 이를 바탕으로 이동물체를 추출할 수 있는 방안을 제안하였다.

  • PDF

중심어 간의 공기정보를 이용한 한국어 확률 구문분석 모델 (Korean Probabilistic Syntactic Model using Head Co-occurrence)

  • 이공주;김재훈
    • 정보처리학회논문지B
    • /
    • 제9B권6호
    • /
    • pp.809-816
    • /
    • 2002
  • 구문 분석에서 가장 큰 문제점 중 하나는 구문 구조의 중의성을 어떻게 해결하느냐에 달려있다. 확률 구문 규칙은 구문 구조의 중의성 해결에 한 방법이 될 수 있다. 본 논문에서는 중심어 간의 공기정보를 이용하여 한국어 구문 구조의 중의성을 해결하는 확률 모델을 제안하고자 한다. 중심어는 어휘를 이용하기 때문에 자료 부족 문제를 야기시킬 수 있다. 이 때문에 자료부족 문제를 어떻게 해결하느냐에 따라 어휘 정보 사용의 성공이 결정될 수 있다. 본 논문에서는 구문규칙을 단순화하고 Back-off 방법을 이용해서 이 문제를 완화한다. 제안된 모델은 실험 데이터에 대해 약 84%의 정확도를 보였다.

어휘의 동시 발생 빈도와 분포를 이용한 다중 주제 회의록 요약 (Multi-Topic Meeting Summarization using Lexical Co-occurrence Frequency and Distribution)

  • 이병수;이지형
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제52차 하계학술대회논문집 23권2호
    • /
    • pp.13-16
    • /
    • 2015
  • 본 논문에서는 어휘의 동시 발생 (co-occurrence) 빈도와 분포를 이용한 회의록 요약방법을 제안한다. 회의록은 일반 문서와 달리 문서에 여러 세부적인 주제들이 나타나며, 잘못된 형식의 문장, 불필요한 잡담들을 포함하고 있기 때문에 이러한 특징들이 문서요약 과정에서 고려되어야 한다. 기존의 일반적인 문서요약 방법은 하나의 주제를 기반으로 문서 전체에서 가장 중요한 문장으로 요약하기 때문에 다중 주제 회의록 요약에는 적합하지 않다. 제안한 방법은 먼저 어휘의 동시 발생 (co-occurrence) 빈도를 이용하여 회의록 분할 (segmentation) 과정을 수행한다. 다음으로 주제의 구분에 따라 분할된 각 영역 (block)의 중요 단어 집합 생성, 중요 문장 추출 과정을 통해 회의록의 중요 문장들을 선별한다. 마지막으로 추출된 중요 문장들의 위치, 종속 관계를 고려하여 최종적으로 회의록을 요약한다. AMI meeting corpus를 대상으로 실험한 결과, 제안한 방법이 baseline 요약 방법들보다 요약 비율에 따른 평가 및 요약문의 세부 주제별 평가에서 우수한 요약 성능을 보임을 확인하였다.

  • PDF

경량 온톨로지 생성 연구 (A Study for the Generation of the Lightweight Ontologies)

  • 한동일;권혁인;백선경
    • 한국IT서비스학회지
    • /
    • 제8권1호
    • /
    • pp.203-215
    • /
    • 2009
  • This paper illustrates the application of co-occurrence theory to generate lightweight ontologies semi-automatically. The proposed model includes three steps of a (Semi-) Automatic creation of Ontology; (they are conceptually named as) the Syntactic-based Ontology, the Semantic-based Ontology and the Ontology Refinement. Each of these three steps are designed to interactively work together, so as to generate Lightweight Ontologies. The Syntactic-based Ontology step includes generating Association words using co-occurrence in web documents. The Semantic-based Ontology step includes the Alignment large Association words with small Ontology, through the process of semantic relations by contextual terms. Finally, the Ontology Refinement step includes the domain expert to refine the lightweight Ontologies. We also conducted a case study to generate lightweight ontologies in specific domains(news domain). In this paper, we found two directions including (1) employment co-occurrence theory to generate Syntactic-based Ontology automatically and (2) Alignment large Association words with small Ontology to generate lightweight ontologies semi-automatically. So far as the design and the generation of big Ontology is concerned, the proposed research will offer useful implications to the researchers and practitioners so as to improve the research level to the commercial use.

컴퓨터 보조진단을 위한 초음파 영상에서 갑상선 결절의 텍스쳐 분석 (Texture analysis of Thyroid Nodules in Ultrasound Image for Computer Aided Diagnostic system)

  • 박병은;장원석;유선국
    • 한국멀티미디어학회논문지
    • /
    • 제20권1호
    • /
    • pp.43-50
    • /
    • 2017
  • According to living environment, the number of deaths due to thyroid diseases increased. In this paper, we proposed an algorithm for recognizing a thyroid detection using texture analysis based on shape, gray level co-occurrence matrix and gray level run length matrix. First of all, we segmented the region of interest (ROI) using active contour model algorithm. Then, we applied a total of 18 features (5 first order descriptors, 10 Gray level co-occurrence matrix features(GLCM), 2 Gray level run length matrix features and shape feature) to each thyroid region of interest. The extracted features are used as statistical analysis. Our results show that first order statistics (Skewness, Entropy, Energy, Smoothness), GLCM (Correlation, Contrast, Energy, Entropy, Difference variance, Difference Entropy, Homogeneity, Maximum Probability, Sum average, Sum entropy), GLRLM features and shape feature helped to distinguish thyroid benign and malignant. This algorithm will be helpful to diagnose of thyroid nodule on ultrasound images.

Research trends related to childhood and adolescent cancer survivors in South Korea using word co-occurrence network analysis

  • Kang, Kyung-Ah;Han, Suk Jung;Chun, Jiyoung;Kim, Hyun-Yong
    • Child Health Nursing Research
    • /
    • 제27권3호
    • /
    • pp.201-210
    • /
    • 2021
  • Purpose: This study analyzed research trends related to childhood and adolescent cancer survivors (CACS) using word co-occurrence network analysis on studies registered in the Korean Citation Index (KCI). Methods: This word co-occurrence network analysis study explored major research trends by constructing a network based on relationships between keywords (semantic morphemes) in the abstracts of published articles. Research articles published in the KCI over the past 10 years were collected using the Biblio Data Collector tool included in the NetMiner Program (version 4), using "cancer survivors", "adolescent", and "child" as the main search terms. After pre-processing, analyses were conducted on centrality (degree and eigenvector), cohesion (community), and topic modeling. Results: For centrality, the top 10 keywords included "treatment", "factor", "intervention", "group", "radiotherapy", "health", "risk", "measurement", "outcome", and "quality of life". In terms of cohesion and topic analysis, three categories were identified as the major research trends: "treatment and complications", "adaptation and support needs", and "management and quality of life". Conclusion: The keywords from the three main categories reflected interdisciplinary identification. Many studies on adaptation and support needs were identified in our analysis of nursing literature. Further research on managing and evaluating the quality of life among CACS must also be conducted.

동시 출현 기반 키워드 네트워크 기법을 이용한 이동식 사다리 추락 재해 위험 요인 연관 구조 모델링 (Correlational Structure Modelling for Fall Accident Risk Factors of Portable Ladders Using Co-occurrence Keyword Networks)

  • 황종문;신성우
    • 한국안전학회지
    • /
    • 제36권3호
    • /
    • pp.50-59
    • /
    • 2021
  • The main purpose of accident analysis is to identify the causal factors and the mechanisms of those factors leading to the accident. However, current accident analysis techniques focus only on finding the factors related to the accident without providing more insightful results, such as structures or mechanisms. For this reason, preventive actions for safety management are concentrated on the elimination of causal factors rather than blocking the connection or chain of accident processes. This greatly reduces the effectiveness of safety management in practice. In the present study, a technique to model the correlational structure of accident risk factors is proposed by using the co-occurrence keyword network analysis technique. To investigate the effectiveness of the proposed technique, a case study involving a portable ladder fall accident is conducted. The results indicate that the proposed technique can construct the correlational structure model of the risk factors of a portable ladder fall accident. This proves the effectiveness of the proposed technique in modeling the correlational structure of accident risk factors.

이미지 검색을 위한 색상 성분 분석 (Color Component Analysis For Image Retrieval)

  • 최영관;최철;박장춘
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.403-410
    • /
    • 2004
  • 최근 의료 영상 분석(Medical Image Analysis)이나 영상 검색(Image Retrieval)을 위한 전처리(Preprocessing) 단계로 영상 분석(Image Analysis)에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 영상 검색에서 색상 성분(Color Component)의 활용 방법을 제안하고자 한다. 이미지를 검색하기 위해 색상 성분을 기반으로 하고, 색상(Color)을 분석하기 위한 기법으로 CLCM(Color Level Co-occurrence Matrix)과 통계적 기법을 이용하고 있다. CLCM은 기하학적 회전 변환(Geometric Rotate Transform)을 통해서 색상 성분을 3차원 공간상에 투영(Projection)하여 공간 관계(Spatial Relationship)로부터 나타나는 분포를 해석하는 방법으로, 본 논문에서 제안하는 주제이다. CLCM은 색상 모델에서 만들어지는 2차원 히스토그램을 지칭하며 색상 모델의 기하학적인 회전 변환을 통해서 생성된다. 그리고 이를 분석하기 위한 방법으로 통계 기법을 활용하고 있다. CLCM과 유사하게 2차원 분포도를 사용하는 GLCM(Gray Level Co-occurrence Matrix)[1]과 불변 모멘트(Invariant Moment)[2,3] 같은 알고리즘은 2차원적인 데이터를 해석하기 위하여 기본적인 통계 기법을 활용하고 있다. 하지만 GLCM과 불변 모멘트가 각각의 도메인에 최적화되어 있다 하더라도 공간 좌표상에 존재하는 불규칙적인 데이터를 완전히 해석할 수는 없다. 즉 GLCM과 불변 모멘트는 기초 통계 기법만을 사용하고 있기 때문에 추출된 특징들의 신뢰성이 낮다는 것이다. 본 논문에서는 이러한 단점을 보완하여 공간 관계를 해석함과 동시에 데이터의 가중치를 해석하기 위해 전형적인 다변량 통계에서 사용하는 주성분 분석(Principal Component Analysis)[4,5]을 이용하고 있다. 그리고 데이터의 정확도를 높이기 위해서 3차원 공간상에 색상 성분을 투영하여 이를 회전시키면서 데이터의 특성을 다각도에서 추출하는 방법을 제시한다.